A303839
Number of noncrossing path sets on n nodes up to rotation and reflection with each path having at least two nodes.
Original entry on oeis.org
1, 0, 1, 1, 3, 5, 17, 40, 138, 430, 1546, 5478, 20525, 77310, 298301, 1161692, 4583525, 18239037, 73221198, 296046399, 1205038270, 4933969005, 20311807087, 84029440358, 349201537324, 1457205298510, 6104204225832, 25661191956781, 108231773165825
Offset: 0
Case n=4: There are 3 possibilities:
.
o---o o o o---o
| | /
o---o o---o o---o
.
A303868
Triangle read by rows: T(n,k) = number of noncrossing path sets on n nodes up to rotation and reflection with k paths and isolated vertices allowed.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 3, 7, 6, 2, 1, 6, 20, 23, 11, 3, 1, 10, 50, 80, 51, 17, 3, 1, 20, 136, 285, 252, 109, 26, 4, 1, 36, 346, 966, 1119, 652, 200, 36, 4, 1, 72, 901, 3188, 4782, 3623, 1502, 352, 50, 5, 1, 136, 2264, 10133, 19116, 18489, 9949, 3120, 570, 65, 5, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 1, 1;
2, 3, 2, 1;
3, 7, 6, 2, 1;
6, 20, 23, 11, 3, 1;
10, 50, 80, 51, 17, 3, 1;
20, 136, 285, 252, 109, 26, 4, 1;
36, 346, 966, 1119, 652, 200, 36, 4, 1;
72, 901, 3188, 4782, 3623, 1502, 352, 50, 5, 1;
...
-
\\ See A303731 for NCPathSetsModDihedral
{ my(rows=Vec(NCPathSetsModDihedral(vector(10, k, y))-1));
for(n=1, #rows, for(k=1, n, print1(polcoeff(rows[n],k), ", ")); print;) }
Showing 1-2 of 2 results.