cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A302828 Array read by antidiagonals: T(n,k) = number of noncrossing path sets on k*n nodes up to rotation and reflection with each path having exactly k nodes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 2, 1, 1, 3, 21, 22, 3, 1, 1, 6, 111, 494, 201, 6, 1, 1, 10, 604, 9400, 18086, 2244, 12, 1, 1, 20, 3196, 157040, 1141055, 794696, 29096, 27, 1, 1, 36, 16528, 2342480, 55967596, 161927208, 38695548, 404064, 65, 1
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Array begins:
=======================================================
n\k| 1  2     3        4           5              6
---+---------------------------------------------------
0  | 1  1     1        1           1              1 ...
1  | 1  1     1        2           3              6 ...
2  | 1  1     4       21         111            604 ...
3  | 1  2    22      494        9400         157040 ...
4  | 1  3   201    18086     1141055       55967596 ...
5  | 1  6  2244   794696   161927208    23276467936 ...
6  | 1 12 29096 38695548 25334545270 10673231900808 ...
...
		

Crossrefs

Columns 2..4 are A006082(n+1), A303330, A303867.
Row n=1 is A005418(k-2).

Programs

  • Mathematica
    nmax = 10; seq[n_, k_] := Module[{p, q, h, c}, p = 1 + InverseSeries[ x/(k*2^(k - 3)*(1 + x)^k) + O[x]^n, x]; h = p /. x -> x^2 + O[x]^n; q = x*D[p, x]/p; c = Integrate[((p - 1)/k + Sum[EulerPhi[d]*(q /. x -> x^d + O[x]^n), {d, 2, n}])/x, x] + If[OddQ[k], 0, 2^(k/2 - 2)*x*h^(k/2)]; If[k == 1, 2/(1 - x) + O[x]^n, 3/2 + c + If[OddQ[k], h + x^2*2^(k - 3)*h^k + x*2^((k - 1)/2)*h^((k + 1)/2), If[k == 2, x*h, 0] + h/(1 - 2^(k/2 - 1)*x*h^(k/2))]/2]/2];
    Clear[col]; col[k_] := col[k] = CoefficientList[seq[nmax, k], x];
    T[n_, k_] := col[k][[n + 1]];
    Table[T[n - k, k], {n, 0, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jul 04 2018, after Andrew Howroyd *)
  • PARI
    seq(n,k)={ \\ gives gf of k'th column
    my(p=1 + serreverse( x/(k*2^(k-3)*(1 + x)^k) + O(x*x^n) ));
    my(h=subst(p,x,x^2+O(x*x^n)), q=x*deriv(p)/p);
    my(c=intformal( ((p-1)/k + sum(d=2,n,eulerphi(d)*subst(q,x,x^d+O(x*x^n))))/x) + if(k%2, 0, 2^(k/2-2)*x*h^(k/2)));
    if(k==1, 2/(1-x) + O(x*x^n), 3/2 + c + if(k%2, h + x^2*2^(k-3)*h^k + x*2^((k-1)/2)*h^((k+1)/2), if(k==2,x*h,0) + h/(1-2^(k/2-1)*x*h^(k/2)) )/2)/2;
    }
    Mat(vector(6, k, Col(seq(7, k))))

A303844 Number of noncrossing path sets on n nodes up to rotation with each path having at least two nodes.

Original entry on oeis.org

1, 0, 1, 1, 4, 7, 26, 69, 246, 818, 2976, 10791, 40591, 153959, 594753, 2320696, 9159498, 36467012, 146411208, 592046830, 2409946566, 9867745442, 40623068380, 168058068487, 698400767839, 2914407151002, 12208398647345, 51322369218674, 216463504458521
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Case n=4: There are 4 possibilities:
.
   o---o   o   o   o---o   o---o
           |   |     /       \
   o---o   o---o   o---o   o---o
.
		

Crossrefs

Programs

  • PARI
    \\ See A303732 for NCPathSetsModCyclic
    Vec(NCPathSetsModCyclic(vector(30, k, k>1)))

A303330 a(n) is the number of noncrossing path sets on 3*n nodes up to rotation and reflection with each path having exactly 3 nodes.

Original entry on oeis.org

1, 1, 4, 22, 201, 2244, 29096, 404064, 5915838, 89918914, 1408072452, 22585364697, 369552118682, 6148989874890, 103788529623864, 1773645405777098, 30638842342771863, 534324445644633987, 9397210553851138484, 166518651072771792918, 2970743502941350443069
Offset: 0

Views

Author

J. Stauduhar, Apr 21 2018

Keywords

Comments

Paths are constructed using noncrossing line segments between the vertices of a regular 3n-gon. Isolated vertices are not allowed.

Crossrefs

Column k=3 of A302828.

Programs

  • Mathematica
    seq[n_] := Module[{p, h, q, c}, p = 1 + InverseSeries[x/(3*(1 + x)^3) + O[x]^n , x]; h = (p /. x -> x^2 + O[x]^n); q = x*D[p, x]/p; c = Integrate[((p - 1)/3 + Sum[EulerPhi[d]*(q /. x -> x^d + O[x]^n), {d, 2, n}])/x, x]; CoefficientList[1 + c + (1 + h + x^2*h^3 + x*2*h^2)/2, x]/2];
    seq[30] (* Jean-François Alcover, Jul 05 2018, after Andrew Howroyd *)
  • PARI
    seq(n)={
    my(p=1 + serreverse( x/(3*(1 + x)^3) + O(x*x^n) ));
    my(h=subst(p, x, x^2 + O(x*x^n)), q=x*deriv(p)/p);
    my(c=intformal(((p-1)/3 + sum(d=2, n, eulerphi(d)*subst(q, x, x^d+O(x*x^n))))/x));
    Vec(1 + c + (1 + h + x^2*h^3 + x*2*h^2)/2)/2} \\ Andrew Howroyd, Apr 29 2018

Formula

a(n) ~ 3^(4*n - 1/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n + 3)). - Vaclav Kotesovec, Jun 01 2022

Extensions

Terms a(8) and beyond from Andrew Howroyd, Apr 29 2018
a(6) corrected by Andrew Howroyd, May 03 2018

A303867 Number of noncrossing path sets on 4*n nodes up to rotation and reflection with each path having exactly 4 nodes.

Original entry on oeis.org

1, 2, 21, 494, 18086, 794696, 38695548, 2015556488, 110292751866, 6267709291736, 367003473639464, 22018423100856184, 1347856204419978236, 83918845269760695536, 5300972002005297517812, 339058084617031980524000, 21924124400037221008705338, 1431303944222490626674244672
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Crossrefs

Column 4 of A302828.

Formula

a(n) ~ 2^(11*n - 5/2) / (sqrt(Pi) * n^(5/2) * 3^(3*n + 3/2)). - Vaclav Kotesovec, Jun 01 2022

A303835 Number of noncrossing path sets on n nodes up to rotation and reflection with isolated vertices allowed.

Original entry on oeis.org

1, 1, 2, 3, 8, 19, 64, 212, 833, 3360, 14476, 63848, 289892, 1338000, 6275589, 29791100, 142973014, 692507861, 3382070233, 16638445745, 82395500651, 410463736691, 2055858519575, 10347925039015, 52321093290715, 265648012207312, 1353953547877556, 6925400869302520
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Case n=3: There are 3 possibilities:
.
     o        o       o
                     / \
   o   o    o---o   o   o
.
Case n=4: There are 8 possibilities:
.
   o   o    o   o    o   o    o   o    o   o    o---o    o   o    o---o
                       /      |          /               |   |      /
   o   o    o---o    o   o    o---o    o---o    o---o    o---o    o---o
.
		

Crossrefs

Programs

  • PARI
    \\ See A303731 for NCPathSetsModDihedral
    Vec(NCPathSetsModDihedral(vector(30, k, 1)))
Showing 1-5 of 5 results.