cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A303864 Array read by antidiagonals: T(n,k) = number of noncrossing path sets on k*n nodes up to rotation with each path having exactly k nodes.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 6, 2, 1, 1, 4, 36, 38, 3, 1, 1, 10, 210, 960, 384, 6, 1, 1, 16, 1176, 18680, 35956, 4425, 14, 1, 1, 36, 6328, 313664, 2280910, 1588192, 57976, 34, 1, 1, 64, 32896, 4683168, 111925464, 323840016, 77381016, 807318, 95, 1
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Array begins:
=======================================================
n\k| 1  2     3        4           5              6
---+---------------------------------------------------
0  | 1  1     1        1           1              1 ...
1  | 1  1     1        3           4             10 ...
2  | 1  1     6       36         210           1176 ...
3  | 1  2    38      960       18680         313664 ...
4  | 1  3   384    35956     2280910      111925464 ...
5  | 1  6  4425  1588192   323840016    46552781760 ...
6  | 1 14 57976 77381016 50668922540 21346459738384 ...
...
		

Crossrefs

Columns 2..4 are A002995(n+1), A303865, A303866.
Row n=1 is A051437(k-3).
Cf. A295224 (polygon dissections), A303694 (sets of cycles instead of paths).

Programs

  • Mathematica
    nmax = 10; seq[n_, k_] := Module[{p, q, h}, p = 1 + InverseSeries[ x/(k*2^If[k == 1, 0, k - 3]*(1 + x)^k) + O[x]^n, x ]; h = p /. x -> x^2 + O[x]^n; q = x*D[p, x]/p; Integrate[((p - 1)/k + Sum[EulerPhi[d]*(q /. x -> x^d + O[x]^n), {d, 2, n}])/x, x] + If[OddQ[k], 0, 2^(k/2 - 2)*x*h^(k/2)] + 1];
    Clear[col]; col[k_] := col[k] = CoefficientList[seq[nmax, k], x];
    T[n_, k_] := col[k][[n + 1]];
    Table[T[n - k, k], {n, 0, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jul 04 2018, after Andrew Howroyd *)
  • PARI
    seq(n,k)={ \\ gives gf of k'th column
    my(p=1 + serreverse( x/(k*2^if(k==1, 0, k-3)*(1 + x)^k) + O(x*x^n) ));
    my(h=subst(p,x,x^2+O(x*x^n)), q=x*deriv(p)/p);
    intformal( ((p-1)/k + sum(d=2,n,eulerphi(d)*subst(q,x,x^d+O(x*x^n))))/x) + if(k%2, 0, 2^(k/2-2)*x*h^(k/2)) + 1;
    }
    Mat(vector(6, k, Col(seq(7, k))))

A303839 Number of noncrossing path sets on n nodes up to rotation and reflection with each path having at least two nodes.

Original entry on oeis.org

1, 0, 1, 1, 3, 5, 17, 40, 138, 430, 1546, 5478, 20525, 77310, 298301, 1161692, 4583525, 18239037, 73221198, 296046399, 1205038270, 4933969005, 20311807087, 84029440358, 349201537324, 1457205298510, 6104204225832, 25661191956781, 108231773165825
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Case n=4: There are 3 possibilities:
.
   o---o   o   o   o---o
           |   |     /
   o---o   o---o   o---o
.
		

Crossrefs

Programs

  • PARI
    \\ See A303731 for NCPathSetsModDihedral
    Vec(NCPathSetsModDihedral(vector(30, k, k>1)))

A303865 Number of noncrossing path sets on 3*n nodes up to rotation with each path having exactly 3 nodes.

Original entry on oeis.org

1, 1, 6, 38, 384, 4425, 57976, 807318, 11828706, 179826245, 2816100678, 45170552490, 739103543356, 12297976924176, 207577047945312, 3547290764931730, 61277684496311364, 1068648890500799799, 18794421104465407618, 333037302131948734566, 5941487005826379359448
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Crossrefs

Column 3 of A303864.

Programs

  • Mathematica
    seq[n_] := Module[{p, q}, p = 1 + InverseSeries[x/(3*(1 + x)^3) + O[x]^n]; q = x*D[p, x]/p; Integrate[((p - 1)/3 + Sum[EulerPhi[d]*(q /. x -> x^d + O[x]^n), {d, 2, n}])/x, x] + 1];
    CoefficientList[seq[21], x] (* Jean-François Alcover, Jul 05 2018, after Andrew Howroyd *)
  • PARI
    seq(n)={ my(p=1 + serreverse( x/(3*(1 + x)^3) + O(x*x^n) )); my(q=x*deriv(p)/p);
    Vec(intformal(((p-1)/3 + sum(d=2, n, eulerphi(d)*subst(q, x, x^d+O(x*x^n))))/x) + 1)}

Formula

a(n) ~ 3^(4*n - 1/2) / (sqrt(Pi) * n^(5/2) * 2^(2*n + 2)). - Vaclav Kotesovec, Jun 01 2022

A303869 Triangle read by rows: T(n,k) = number of noncrossing path sets on n nodes up to rotation with k paths and isolated vertices allowed.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 4, 2, 1, 4, 11, 8, 2, 1, 10, 34, 39, 16, 3, 1, 16, 92, 144, 90, 25, 3, 1, 36, 256, 545, 473, 197, 40, 4, 1, 64, 672, 1878, 2184, 1246, 370, 56, 4, 1, 136, 1762, 6296, 9436, 7130, 2910, 658, 80, 5, 1, 256, 4480, 20100, 38025, 36690, 19698, 6090, 1080, 105, 5, 1
Offset: 1

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Triangle begins:
    1;
    1,    1;
    1,    1,    1;
    3,    4,    2,    1;
    4,   11,    8,    2,    1;
   10,   34,   39,   16,    3,    1;
   16,   92,  144,   90,   25,    3,   1;
   36,  256,  545,  473,  197,   40,   4,  1;
   64,  672, 1878, 2184, 1246,  370,  56,  4, 1;
  136, 1762, 6296, 9436, 7130, 2910, 658, 80, 5, 1;
  ...
		

Crossrefs

Row sums are A303836.
Column 1 is A051437(n-3).

Programs

  • PARI
    \\ See A303732 for NCPathSetsModCyclic
    { my(rows=Vec(NCPathSetsModCyclic(vector(10, k, y))-1));
    for(n=1, #rows, for(k=1,n,print1(polcoeff(rows[n],k), ", ")); print;)}

A303836 Number of noncrossing path sets on n nodes up to rotation with isolated vertices allowed.

Original entry on oeis.org

1, 1, 2, 3, 10, 26, 103, 371, 1552, 6475, 28414, 126530, 577188, 2670332, 12538434, 59554199, 285882600, 1384875627, 6763821250, 33276183371, 164789380052, 820923863918, 4111708742153, 20695831549310, 104642143845428, 531295928725508, 2707906874407464
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Case n=4: There are 10 possibilities:
.
   o   o    o   o    o   o    o   o    o---o
                       /      |
   o   o    o---o    o   o    o---o    o---o
.
   o   o    o   o    o   o    o---o    o---o
     /        \      |   |      /        \
   o---o    o---o    o---o    o---o    o---o
.
		

Crossrefs

Row sums of A303869.

Programs

  • PARI
    \\ See A303732 for NCPathSetsModCyclic
    Vec(NCPathSetsModCyclic(vector(30, k, 1)))
Showing 1-5 of 5 results.