A303844
Number of noncrossing path sets on n nodes up to rotation with each path having at least two nodes.
Original entry on oeis.org
1, 0, 1, 1, 4, 7, 26, 69, 246, 818, 2976, 10791, 40591, 153959, 594753, 2320696, 9159498, 36467012, 146411208, 592046830, 2409946566, 9867745442, 40623068380, 168058068487, 698400767839, 2914407151002, 12208398647345, 51322369218674, 216463504458521
Offset: 0
Case n=4: There are 4 possibilities:
.
o---o o o o---o o---o
| | / \
o---o o---o o---o o---o
.
A303869
Triangle read by rows: T(n,k) = number of noncrossing path sets on n nodes up to rotation with k paths and isolated vertices allowed.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 3, 4, 2, 1, 4, 11, 8, 2, 1, 10, 34, 39, 16, 3, 1, 16, 92, 144, 90, 25, 3, 1, 36, 256, 545, 473, 197, 40, 4, 1, 64, 672, 1878, 2184, 1246, 370, 56, 4, 1, 136, 1762, 6296, 9436, 7130, 2910, 658, 80, 5, 1, 256, 4480, 20100, 38025, 36690, 19698, 6090, 1080, 105, 5, 1
Offset: 1
Triangle begins:
1;
1, 1;
1, 1, 1;
3, 4, 2, 1;
4, 11, 8, 2, 1;
10, 34, 39, 16, 3, 1;
16, 92, 144, 90, 25, 3, 1;
36, 256, 545, 473, 197, 40, 4, 1;
64, 672, 1878, 2184, 1246, 370, 56, 4, 1;
136, 1762, 6296, 9436, 7130, 2910, 658, 80, 5, 1;
...
-
\\ See A303732 for NCPathSetsModCyclic
{ my(rows=Vec(NCPathSetsModCyclic(vector(10, k, y))-1));
for(n=1, #rows, for(k=1,n,print1(polcoeff(rows[n],k), ", ")); print;)}
Showing 1-2 of 2 results.