cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A303731 Number of noncrossing path sets on n nodes up to rotation and reflection with each path having a prime number of nodes.

Original entry on oeis.org

1, 0, 1, 1, 1, 5, 6, 27, 53, 140, 649, 1297, 6355, 18038, 63226, 241741, 744711, 3008107, 10028056, 37270169, 138083464, 488933323, 1872525356, 6763888465, 25498771059, 95467533318, 355595703773, 1353873044078, 5077809606803, 19345857682140, 73533468653115
Offset: 0

Views

Author

Andrew Howroyd, Apr 29 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ number of path sets with restricted path lengths
    NCPathSetsModDihedral(v)={ my(n=#v);
    my(p=serreverse(x/(1 + x*v[1] + sum(k=2, #v, (k*2^(k-3))*x^k*v[k])) + O(x^2*x^n) )/x);
    my(vars=variables(p));
    my(h=substvec(p + O(x^(n\2+1)),vars,apply(t->t^2, vars)));
    my(q=x*deriv(p)/p);
    my(R=v[1]*x + sum(i=1, (#v-1)\2, v[2*i+1]*2^(i-1)*x*(x^2*h)^i), Q=sum(i=1, #v\2, v[2*i]*2^(i-1)*(x^2*h)^i), T=intformal((p - 1 + sum(d=2,n, eulerphi(d)*substvec(q + O(x^(n\d+1)), vars, apply(t->t^d, vars))))/x));
    O(x*x^n) + (1 + T + (1 + Q + (1+R)^2*h/(1-Q) + v[2]*x^2*h)/2)/2;
    }
    Vec(NCPathSetsModDihedral(vector(30, k, isprime(k))))

A303844 Number of noncrossing path sets on n nodes up to rotation with each path having at least two nodes.

Original entry on oeis.org

1, 0, 1, 1, 4, 7, 26, 69, 246, 818, 2976, 10791, 40591, 153959, 594753, 2320696, 9159498, 36467012, 146411208, 592046830, 2409946566, 9867745442, 40623068380, 168058068487, 698400767839, 2914407151002, 12208398647345, 51322369218674, 216463504458521
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Case n=4: There are 4 possibilities:
.
   o---o   o   o   o---o   o---o
           |   |     /       \
   o---o   o---o   o---o   o---o
.
		

Crossrefs

Programs

  • PARI
    \\ See A303732 for NCPathSetsModCyclic
    Vec(NCPathSetsModCyclic(vector(30, k, k>1)))

A303729 Number of noncrossing path sets on n nodes with each path having a prime number of nodes.

Original entry on oeis.org

1, 0, 1, 3, 2, 35, 32, 315, 746, 2304, 12422, 27621, 150729, 465387, 1762427, 7239244, 23799382, 102216580, 360900542, 1416054762, 5522838696, 20534319262, 82389314900, 311135342409, 1223933415631, 4773363130810, 18490946264039, 73109087367264, 284357219601461
Offset: 0

Views

Author

Andrew Howroyd, Apr 29 2018

Keywords

Crossrefs

Programs

  • Mathematica
    seq[n_] := InverseSeries[x/(1 + Sum[If[PrimeQ[k], k*2^(k-3)*x^k, 0], {k, 2, n}]) + O[x]^(n+2), x]/x;
    CoefficientList[seq[28], x] (* Jean-François Alcover, May 15 2018, translated from PARI *)
  • PARI
    seq(n)={Vec(serreverse(x/(1 + sum(k=2, n, if(isprime(k), k*2^(k-3)*x^k))) + O(x^(n+2)) )/x)}

A303869 Triangle read by rows: T(n,k) = number of noncrossing path sets on n nodes up to rotation with k paths and isolated vertices allowed.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 4, 2, 1, 4, 11, 8, 2, 1, 10, 34, 39, 16, 3, 1, 16, 92, 144, 90, 25, 3, 1, 36, 256, 545, 473, 197, 40, 4, 1, 64, 672, 1878, 2184, 1246, 370, 56, 4, 1, 136, 1762, 6296, 9436, 7130, 2910, 658, 80, 5, 1, 256, 4480, 20100, 38025, 36690, 19698, 6090, 1080, 105, 5, 1
Offset: 1

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Triangle begins:
    1;
    1,    1;
    1,    1,    1;
    3,    4,    2,    1;
    4,   11,    8,    2,    1;
   10,   34,   39,   16,    3,    1;
   16,   92,  144,   90,   25,    3,   1;
   36,  256,  545,  473,  197,   40,   4,  1;
   64,  672, 1878, 2184, 1246,  370,  56,  4, 1;
  136, 1762, 6296, 9436, 7130, 2910, 658, 80, 5, 1;
  ...
		

Crossrefs

Row sums are A303836.
Column 1 is A051437(n-3).

Programs

  • PARI
    \\ See A303732 for NCPathSetsModCyclic
    { my(rows=Vec(NCPathSetsModCyclic(vector(10, k, y))-1));
    for(n=1, #rows, for(k=1,n,print1(polcoeff(rows[n],k), ", ")); print;)}

A303836 Number of noncrossing path sets on n nodes up to rotation with isolated vertices allowed.

Original entry on oeis.org

1, 1, 2, 3, 10, 26, 103, 371, 1552, 6475, 28414, 126530, 577188, 2670332, 12538434, 59554199, 285882600, 1384875627, 6763821250, 33276183371, 164789380052, 820923863918, 4111708742153, 20695831549310, 104642143845428, 531295928725508, 2707906874407464
Offset: 0

Views

Author

Andrew Howroyd, May 01 2018

Keywords

Examples

			Case n=4: There are 10 possibilities:
.
   o   o    o   o    o   o    o   o    o---o
                       /      |
   o   o    o---o    o   o    o---o    o---o
.
   o   o    o   o    o   o    o---o    o---o
     /        \      |   |      /        \
   o---o    o---o    o---o    o---o    o---o
.
		

Crossrefs

Row sums of A303869.

Programs

  • PARI
    \\ See A303732 for NCPathSetsModCyclic
    Vec(NCPathSetsModCyclic(vector(30, k, 1)))
Showing 1-5 of 5 results.