A303753 Ordinal transform of cototient (A051953).
1, 1, 2, 1, 3, 1, 4, 2, 1, 1, 5, 1, 6, 2, 1, 3, 7, 1, 8, 2, 1, 3, 9, 1, 1, 1, 2, 2, 10, 1, 11, 3, 1, 1, 1, 1, 12, 1, 1, 2, 13, 1, 14, 3, 1, 4, 15, 1, 2, 2, 1, 1, 16, 1, 2, 2, 2, 3, 17, 1, 18, 3, 1, 4, 1, 1, 19, 2, 1, 2, 20, 1, 21, 1, 1, 1, 2, 1, 22, 2, 2, 1, 23, 1, 3, 2, 1, 3, 24, 1, 2, 4, 1, 5, 1, 1, 25, 1, 1, 2, 26, 1, 27, 2, 1
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Maple
b:= proc() 0 end: a:= proc(n) option remember; local t; t:= numtheory[phi](n)-n; b(t):= b(t)+1 end: seq(a(n), n=1..120); # Alois P. Heinz, Apr 30 2018
-
Mathematica
b[_] = 0; a[n_] := a[n] = With[{t = EulerPhi[n]-n}, b[t] = b[t]+1]; Array[a, 120] (* Jean-François Alcover, Dec 19 2021, after Alois P. Heinz *)
-
PARI
up_to = 65537; ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; }; A051953(n) = (n - eulerphi(n)); v303753 = ordinal_transform(vector(up_to,n,A051953(n))); A303753(n) = v303753[n];
Formula
For all n >= 1, a(A000040(n)) = n.
Comments