A303787 a(n) = Sum_{i=0..m} d(i)*4^i, where Sum_{i=0..m} d(i)*5^i is the base-5 representation of n.
0, 1, 2, 3, 4, 4, 5, 6, 7, 8, 8, 9, 10, 11, 12, 12, 13, 14, 15, 16, 16, 17, 18, 19, 20, 16, 17, 18, 19, 20, 20, 21, 22, 23, 24, 24, 25, 26, 27, 28, 28, 29, 30, 31, 32, 32, 33, 34, 35, 36, 32, 33, 34, 35, 36, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 44, 45, 46, 47, 48, 48, 49, 50, 51
Offset: 0
Examples
13 = 23_5, so a(13) = 2*4 + 3 = 11. 14 = 24_5, so a(14) = 2*4 + 4 = 12. 15 = 30_5, so a(15) = 3*4 + 0 = 12. 16 = 31_5, so a(16) = 3*4 + 1 = 13.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Julia
function a(n) m, r, b = n, 0, 1 while m > 0 m, q = divrem(m, 5) r += b * q b *= 4 end r end; [a(n) for n in 0:73] |> println # Peter Luschny, Jan 03 2021
-
PARI
a(n) = fromdigits(digits(n, 5), 4); \\ Michel Marcus, May 02 2018
-
Ruby
def f(k, ary) (0..ary.size - 1).inject(0){|s, i| s + ary[i] * k ** i} end def A(k, n) (0..n).map{|i| f(k, i.to_s(k + 1).split('').map(&:to_i).reverse)} end p A(4, 100)