cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303813 Generalized 19-gonal (or enneadecagonal) numbers: m*(17*m - 15)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 16, 19, 49, 54, 99, 106, 166, 175, 250, 261, 351, 364, 469, 484, 604, 621, 756, 775, 925, 946, 1111, 1134, 1314, 1339, 1534, 1561, 1771, 1800, 2025, 2056, 2296, 2329, 2584, 2619, 2889, 2926, 3211, 3250, 3550, 3591, 3906, 3949, 4279, 4324, 4669, 4716, 5076, 5125, 5500, 5551, 5941, 5994, 6399
Offset: 0

Views

Author

Omar E. Pol, Jun 06 2018

Keywords

Comments

Numbers k for which 136*k + 225 is a square. - Bruno Berselli, Jul 10 2018
Partial sums of A317315. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), this sequence (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • GAP
    a:=[0,1,16,19,49];;  for n in [6..60] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Jul 10 2018
  • Mathematica
    With[{nn = 54}, {0}~Join~Riffle[Array[PolygonalNumber[19, #] &, Ceiling[nn/2]], Array[PolygonalNumber[19, -#] &, Ceiling[nn/2]]]] (* Michael De Vlieger, Jun 06 2018 *)
    CoefficientList[ Series[-x (x^2 + 15x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 16, 19, 49}, 51] (* Robert G. Wilson v, Jul 28 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 15*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jun 08 2018
    

Formula

From Colin Barker, Jun 08 2018: (Start)
G.f.: x*(1 + 15*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = (34*n^2 + 60*n)/16 for n even.
a(n) = (34*n^2 + 8*n - 26)/16 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)