A303826 Hankel transform of A001246.
1, 3, 99, 43881, 280974025, 26916213134875, 39339805703866118875, 887919033897631593738548625, 311967217568836709207331125906048625, 1715750319988362944273302140220635494624999475
Offset: 0
Keywords
Examples
a(2) = 99 because determinant of the following matrix is 99. [1 1 4] [1 4 25] [4 25 196]
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..41
- Wikipedia, Hankel matrix
Programs
-
Maple
a:= n-> LinearAlgebra[Determinant](Matrix(n+1, (i, j)-> (t-> (binomial(2*t, t)/(t+1))^2)(i+j-2))): seq(a(n), n=0..15); # Alois P. Heinz, May 01 2018
-
Mathematica
Table[Det[ Table[(CatalanNumber[i + j - 2])^2, {i, 1, n + 1}, {j, 1, n + 1}]], {n, 0, 10}]
-
PARI
a(n) = matdet(matrix(n+1, n+1, i, j, (binomial(2*(i+j-2),(i+j-2))/(i+j-1))^2)); \\ Altug Alkan, May 01 2018
Formula
a(n)^(1/n) ~ d * 4^n, where d = 0.263565... - Vaclav Kotesovec, May 06 2024
Extensions
Name simplified by Andrey Zabolotskiy, May 02 2018
Comments