A303868 Triangle read by rows: T(n,k) = number of noncrossing path sets on n nodes up to rotation and reflection with k paths and isolated vertices allowed.
1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 3, 7, 6, 2, 1, 6, 20, 23, 11, 3, 1, 10, 50, 80, 51, 17, 3, 1, 20, 136, 285, 252, 109, 26, 4, 1, 36, 346, 966, 1119, 652, 200, 36, 4, 1, 72, 901, 3188, 4782, 3623, 1502, 352, 50, 5, 1, 136, 2264, 10133, 19116, 18489, 9949, 3120, 570, 65, 5, 1
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 1, 1; 2, 3, 2, 1; 3, 7, 6, 2, 1; 6, 20, 23, 11, 3, 1; 10, 50, 80, 51, 17, 3, 1; 20, 136, 285, 252, 109, 26, 4, 1; 36, 346, 966, 1119, 652, 200, 36, 4, 1; 72, 901, 3188, 4782, 3623, 1502, 352, 50, 5, 1; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Programs
-
PARI
\\ See A303731 for NCPathSetsModDihedral { my(rows=Vec(NCPathSetsModDihedral(vector(10, k, y))-1)); for(n=1, #rows, for(k=1, n, print1(polcoeff(rows[n],k), ", ")); print;) }