A303972 Total volume of all cubes with side length n which can be split such that n = p + q, p divides q and p < q.
0, 0, 27, 64, 125, 432, 343, 1024, 1458, 2000, 1331, 6912, 2197, 5488, 10125, 12288, 4913, 23328, 6859, 32000, 27783, 21296, 12167, 82944, 31250, 35152, 59049, 87808, 24389, 162000, 29791, 131072, 107811, 78608, 128625, 326592, 50653, 109744, 177957, 384000
Offset: 1
Programs
-
Magma
[0, 0] cat [&+[(((n-k) div k)-(n-k-1) div k)*n^3: k in [1..(n-1) div 2]]: n in [3..80]]; // Vincenzo Librandi, May 04 2018
-
Maple
A303972 := proc(n) v := 0 ; for p from 1 to n/2 do q := n-p ; if p < q and modp(q,p) = 0 then v := v+n^3 ; end if; end do: v ; end proc: seq(A303972(n),n=1..40) ; # R. J. Mathar, Jun 25 2018
-
Mathematica
Table[n^3*Sum[(Floor[(n - i)/i] - Floor[(n - i - 1)/i]), {i, Floor[(n - 1)/2]}], {n, 50}]
Formula
a(n) = n^3 * Sum_{i=1..floor((n-1)/2)} floor((n-i)/i) - floor((n-i-1)/i).
a(n) = n * A303873(n).