cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A303972 Total volume of all cubes with side length n which can be split such that n = p + q, p divides q and p < q.

Original entry on oeis.org

0, 0, 27, 64, 125, 432, 343, 1024, 1458, 2000, 1331, 6912, 2197, 5488, 10125, 12288, 4913, 23328, 6859, 32000, 27783, 21296, 12167, 82944, 31250, 35152, 59049, 87808, 24389, 162000, 29791, 131072, 107811, 78608, 128625, 326592, 50653, 109744, 177957, 384000
Offset: 1

Views

Author

Wesley Ivan Hurt, May 03 2018

Keywords

Crossrefs

Cf. A303873, A023645 (number of contributing cubes).

Programs

  • Magma
    [0, 0] cat [&+[(((n-k) div k)-(n-k-1) div k)*n^3: k in [1..(n-1) div 2]]: n in [3..80]]; // Vincenzo Librandi, May 04 2018
  • Maple
    A303972 := proc(n)
        v := 0 ;
        for p from 1 to n/2 do
            q := n-p ;
            if p < q and modp(q,p) = 0 then
                v := v+n^3 ;
            end if;
        end do:
        v ;
    end proc:
    seq(A303972(n),n=1..40) ; # R. J. Mathar, Jun 25 2018
  • Mathematica
    Table[n^3*Sum[(Floor[(n - i)/i] - Floor[(n - i - 1)/i]), {i, Floor[(n - 1)/2]}], {n, 50}]

Formula

a(n) = n^3 * Sum_{i=1..floor((n-1)/2)} floor((n-i)/i) - floor((n-i-1)/i).
a(n) = n * A303873(n).

A303973 Total volume of all rectangular prisms with dimensions (p,p,q) such that n = p + q, p divides q and p < q.

Original entry on oeis.org

0, 0, 2, 3, 4, 21, 6, 31, 62, 41, 10, 260, 12, 61, 372, 263, 16, 648, 18, 722, 868, 101, 22, 2292, 524, 121, 1700, 1544, 28, 3873, 30, 2135, 2964, 161, 2156, 7703, 36, 181, 4756, 6690, 40, 9051, 42, 4844, 11088, 221, 46, 18788, 2106, 5366, 10308, 7610, 52
Offset: 1

Views

Author

Wesley Ivan Hurt, May 03 2018

Keywords

Examples

			For n =12 the  prism (p,p,q) = (1,1,11) contributes 1*1*11=11 to the volume, (2,2,10) contributes 2*2*10= 40, (3,3,9) contributes 3*3*9= 81, (4,4,8) contributes 128. The total is a(12) = 11+40+81+128 = 260.
		

Crossrefs

Cf. A303873, A023645 (number of contributing prisms).

Programs

  • Magma
    [0,0] cat [&+[k^2*(n-k)*(((n-k) div k)-((n-k-1) div k)):  k in [1..((n-1) div 2)]]: n in [3..80]]; // Vincenzo Librandi, May 04 2018
  • Maple
    A303973 := proc(n)
            v := 0 ;
            for p from 1 to n/2 do
                    q := n-p ;
                    if p < q and modp(q,p) = 0 then
                            v := v+p^2*q ;
                    end if;
            end do:
            v ;
    end proc:
    seq(A303973(n),n=1..40) ; # R. J. Mathar, Jun 25 2018
  • Mathematica
    Table[Sum[i^2 (n - i) (Floor[(n - i)/i] - Floor[(n - i - 1)/i]), {i, Floor[(n - 1)/2]}], {n, 100}]

Formula

a(n) = Sum_{i=1..floor((n-1)/2)} i^2 * (n-i) * (floor((n-i)/i) - floor((n-i-1)/i)).
Showing 1-2 of 2 results.