cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A303908 Expansion of 1/(2 + x - theta_2(sqrt(x))/(2*x^(1/8))), where theta_2() is the Jacobi theta function.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 2, 0, 0, 3, 1, 0, 5, 2, 0, 9, 5, 0, 15, 10, 1, 27, 20, 3, 46, 40, 9, 80, 78, 22, 139, 152, 51, 242, 290, 114, 427, 550, 247, 753, 1034, 525, 1340, 1933, 1092, 2396, 3602, 2237, 4312, 6685, 4519, 7813, 12380, 9027, 14239, 22877, 17866, 26110, 42214, 35072, 48123, 77829, 68379
Offset: 0

Views

Author

Ilya Gutkovskiy, May 02 2018

Keywords

Comments

Number of compositions (ordered partitions) of n into triangular numbers > 1.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
          add(a(n-j*(j+1)/2), j=2..isqrt(2*n))))
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, May 02 2018
  • Mathematica
    nmax = 62; CoefficientList[Series[1/(2 + x - EllipticTheta[2, 0, Sqrt[x]]/(2 x^(1/8))), {x, 0, nmax}], x]
    nmax = 62; CoefficientList[Series[1/(1 - Sum[x^(k (k + 1)/2), {k, 2, nmax}]), {x, 0, nmax}], x]
    a[0] = 1; a[n_] := a[n] = Sum[SquaresR[1, 8 k + 1] a[n - k], {k, 2, n}]/2; Table[a[n], {n, 0, 62}]

Formula

G.f.: 1/(1 - Sum_{k>=2} x^(k*(k+1)/2)).
Showing 1-1 of 1 results.