cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A303920 G.f.: A(x,y) = (1-y) * Sum_{n>=0} y^n * (1 + x*(1-y)^2)^(n^2).

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 6, 6, 0, 0, 0, 4, 56, 56, 4, 0, 0, 0, 1, 117, 722, 722, 117, 1, 0, 0, 0, 0, 126, 2982, 12012, 12012, 2982, 126, 0, 0, 0, 0, 0, 84, 6916, 79548, 246092, 246092, 79548, 6916, 84, 0, 0, 0, 0, 0, 36, 10900, 312880, 2322000, 6002824, 6002824, 2322000, 312880, 10900, 36, 0, 0, 0, 0, 0, 9, 12717, 864009, 13617765, 74916306, 170048394, 170048394, 74916306, 13617765, 864009, 12717, 9, 0, 0, 0, 0, 0, 1, 11421, 1825786, 57282026, 604000555, 2669115383, 5489377628, 5489377628, 2669115383, 604000555, 57282026, 1825786, 11421, 1, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, May 02 2018

Keywords

Comments

G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..2*n} T(n,k) * x^n*y^k, where T(n,k) is the term of this triangle at position k in row n.

Examples

			G.f.: A(x,y) = (1-y) * ( 1 + y*(1 + x*(1-y)^2) + y^2*(1 + x*(1-y)^2)^4 + y^3*(1 + x*(1-y)^2)^9 + y^4*(1 + x*(1-y)^2)^16 + y^5*(1 + x*(1-y)^2)^25 + ... ).
Explicitly,
A(x,y) = 1 + x*(y + y^2) + x^2*(6*y^2 + 6*y^3) + x^3*(4*y^2 + 56*y^3 + 56*y^4 + 4*y^5) + x^4*(y^2 + 117*y^3 + 722*y^4 + 722*y^5 + 117*y^6 + y^7) + x^5*(126*y^3 + 2982*y^4 + 12012*y^5 + 12012*y^6 + 2982*y^7 + 126*y^8) + x^6*(84*y^3 + 6916*y^4 + 79548*y^5 + 246092*y^6 + 246092*y^7 + 79548*y^8 + 6916*y^9 + 84*y^10) + x^7*(36*y^3 + 10900*y^4 + 312880*y^5 + 2322000*y^6 + 6002824*y^7 + 6002824*y^8 + 2322000*y^9 + 312880*y^10 + 10900*y^11 + 36*y^12) + x^8*(9*y^3 + 12717*y^4 + 864009*y^5 + 13617765*y^6 + 74916306*y^7 + 170048394*y^8 + 170048394*y^9 + 74916306*y^10 + 13617765*y^11 + 864009*y^12 + 12717*y^13 + 9*y^14) + x^9*(y^3 + 11421*y^4 + 1825786*y^5 + 57282026*y^6 + 604000555*y^7 + 2669115383*y^8 + 5489377628*y^9 + 5489377628*y^10 + 2669115383*y^11 + 604000555*y^12 + 57282026*y^13 + 1825786*y^14 + 11421*y^15 + y^16) + ...
This triangle begins:
[1];
[0, 1, 1];
[0, 0, 6, 6, 0];
[0, 0, 4, 56, 56, 4, 0];
[0, 0, 1, 117, 722, 722, 117, 1, 0];
[0, 0, 0, 126, 2982, 12012, 12012, 2982, 126, 0, 0];
[0, 0, 0, 84, 6916, 79548, 246092, 246092, 79548, 6916, 84, 0, 0];
[0, 0, 0, 36, 10900, 312880, 2322000, 6002824, 6002824, 2322000, 312880, 10900, 36, 0, 0];
[0, 0, 0, 9, 12717, 864009, 13617765, 74916306, 170048394, 170048394, 74916306, 13617765, 864009, 12717, 9, 0, 0];
[0, 0, 0, 1, 11421, 1825786, 57282026, 604000555, 2669115383, 5489377628, 5489377628, 2669115383, 604000555, 57282026, 1825786, 11421, 1, 0, 0]; ...
		

Crossrefs

Cf. A303921 (diagonal), A303922 (column sums), A001813 (row sums), A265936 (y=2), A173217.

Programs

  • PARI
    /* G.f. by Definition: */
    {T(n,k) = my(A = (1-y) * sum(m=0,2*n, y^m * (1 + x*(1-y)^2  +x*O(x^(2*n)) )^(m^2))); polcoeff(polcoeff(A, n,x),k,y)}
    for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", ")); print(""))
    
  • PARI
    /* Continued fraction expression: */
    {T(n,k) = my(CF=1, q = 1 + x*(1-y)^2 +x*O(x^(2*n))); for(k=0, n, CF = 1/(1 - q^(4*n-4*k+1)*y/(1 - q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*y*CF)) ); polcoeff(polcoeff((1-y)*CF, n,x),k,y)}
    for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", ")); print(""))
    
  • PARI
    /* G.f. by q-series identity: */
    {T(n,k) = my(A =1, q = 1 + x*(1-y)^2 +x*O(x^(2*n))); A = (1-y) * sum(m=0,2*n, y^m*q^m * prod(k=1,m, (1 - y*q^(4*k-3)) / (1 - y*q^(4*k-1) +x*O(x^(2*n))) )); polcoeff(polcoeff(A, n,x),k,y)}
    for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", ")); print(""))

Formula

GENERATING FUNCTIONS.
(1) A(x,y) = (1-y) * Sum_{n>=0} y^n * (1 + x*(1-y)^2)^(n^2).
(2) A(x,y) = (1-y) * Sum_{n>=0} y^n * q^n * Product_{k=1..n} (1 - q^(4*k-3)*y) / (1 - q^(4*k-1)*y), where q = 1 + x*(1-y)^2, due to a q-series identity.
(3) A(x,y) = (1-y)/(1 - q*y/(1 - q*(q^2-1)*y/(1 - q^5*y/(1 - q^3*(q^4-1)*y/(1 - q^9*y/(1- q^5*(q^6-1)*y/(1 - q^13*y/(1 - q^7*(q^8-1)*y/(1 - ...))))))))), where q = 1 + x*(1-y)^2, a continued fraction due to an identity of a partial elliptic theta function.
FORMULAS INVOLVING TERMS.
Sum_{k=0..2*n} T(n,k) = (2*n)!/n!, for n>=0 (row sums = A001813).
Sum_{k=0..2*n} T(n,k) * (-1)^k = 0, for n>=1 (symmetric rows).
Sum_{k=0..2*n} T(n,k) * 2^k = A265936(n), for n>=1.
Sum_{k=0..2*n} T(n,k) / 2^k = A173217(n) / 4^n, for n>=0.
Sum_{j=0..k^2} T(j,k) = A303922(k), for k>=0 (column sums).
T(n,n) = A303921(n), for n>=0 (diagonal).

A303922 Column sums of triangle A303920.

Original entry on oeis.org

1, 1, 12, 435, 60607, 32465376, 67856416808, 560418604644648, 18418643482653787248, 2416653303692582729686744, 1267452375341631770930186428169, 2658327966985973593187656395635032767, 22300420873364447640210289607043443823426176, 748285604725151189853520504436684719836490370604576
Offset: 0

Views

Author

Paul D. Hanna, May 02 2018

Keywords

Comments

G.f. of A303920: (1-y) * Sum_{n>=0} y^n * (1 + x*(1-y)^2)^(n^2) = Sum_{n>=0} Sum_{k=0..2*n} A303920(n,k)*x^n*y^k; the g.f. of this sequence is at y=x, x=1.

Examples

			G.f.: A(x) = 1 + x + 12*x^2 + 435*x^3 + 60607*x^4 + 32465376*x^5 + 67856416808*x^6 + 560418604644648*x^7 + 18418643482653787248*x^8 + ...
such that
A(x)/(1-x) = 1 + x*(2 - 2*x + x^2) + x^2*(2 - 2*x + x^2)^4 + x^3*(2 - 2*x + x^2)^9 + x^4*(2 - 2*x + x^2)^16 + x^5*(2 - 2*x + x^2)^25 + ...
		

Crossrefs

Programs

  • PARI
    /* G.f. by Definition: */
    {a(n) = my(A = (1-x) * sum(m=0,2*n, x^m * (1 + (1-x)^2  +x*O(x^n) )^(m^2))); polcoeff(A, n,x)}
    for(n=0, 20, print1(a(n),", "))
    
  • PARI
    /* Continued fraction expression: */
    {a(n) = my(CF=1, q = 1 + (1-x)^2 +x*O(x^n)); for(k=0, n, CF = 1/(1 - q^(4*n-4*k+1)*x/(1 - q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*x*CF)) ); polcoeff((1-x)*CF, n,x)}
    for(n=0, 20, print1(a(n),", "))
    
  • PARI
    /* G.f. by q-series identity: */
    {a(n) = my(A =1, q = 1 + (1-x)^2 +x*O(x^n)); A = (1-x) * sum(m=0,2*n, x^m*q^m * prod(k=1,m, (1 - x*q^(4*k-3)) / (1 - x*q^(4*k-1) +x*O(x^n)) )); polcoeff(A, n,x)}
    for(n=0, 20, print1(a(n),", "))

Formula

GENERATING FUNCTIONS.
(1) A(x) = (1-x) * Sum_{n>=0} x^n * (1 + (1-x)^2)^(n^2).
(2) A(x) = (1-x) * Sum_{n>=0} x^n*q^n * Product_{k=1..n} (1 - q^(4*k-3)*x) / (1 - q^(4*k-1)*x) where q = 1 + (1-x)^2, due to a q-series identity.
(3) A(x) = (1-x)/(1 - q*x/(1 - q*(q^2-1)*x/(1 - q^5*x/(1 - q^3*(q^4-1)*x/(1 - q^9*x/(1- q^5*(q^6-1)*x/(1 - q^13*x/(1 - q^7*(q^8-1)*x/(1 - ...))))))))) where q = 1 + (1-x)^2, a continued fraction due to an identity of a partial elliptic theta function.
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Oct 08 2019
Showing 1-2 of 2 results.