cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A303920 G.f.: A(x,y) = (1-y) * Sum_{n>=0} y^n * (1 + x*(1-y)^2)^(n^2).

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 6, 6, 0, 0, 0, 4, 56, 56, 4, 0, 0, 0, 1, 117, 722, 722, 117, 1, 0, 0, 0, 0, 126, 2982, 12012, 12012, 2982, 126, 0, 0, 0, 0, 0, 84, 6916, 79548, 246092, 246092, 79548, 6916, 84, 0, 0, 0, 0, 0, 36, 10900, 312880, 2322000, 6002824, 6002824, 2322000, 312880, 10900, 36, 0, 0, 0, 0, 0, 9, 12717, 864009, 13617765, 74916306, 170048394, 170048394, 74916306, 13617765, 864009, 12717, 9, 0, 0, 0, 0, 0, 1, 11421, 1825786, 57282026, 604000555, 2669115383, 5489377628, 5489377628, 2669115383, 604000555, 57282026, 1825786, 11421, 1, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, May 02 2018

Keywords

Comments

G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..2*n} T(n,k) * x^n*y^k, where T(n,k) is the term of this triangle at position k in row n.

Examples

			G.f.: A(x,y) = (1-y) * ( 1 + y*(1 + x*(1-y)^2) + y^2*(1 + x*(1-y)^2)^4 + y^3*(1 + x*(1-y)^2)^9 + y^4*(1 + x*(1-y)^2)^16 + y^5*(1 + x*(1-y)^2)^25 + ... ).
Explicitly,
A(x,y) = 1 + x*(y + y^2) + x^2*(6*y^2 + 6*y^3) + x^3*(4*y^2 + 56*y^3 + 56*y^4 + 4*y^5) + x^4*(y^2 + 117*y^3 + 722*y^4 + 722*y^5 + 117*y^6 + y^7) + x^5*(126*y^3 + 2982*y^4 + 12012*y^5 + 12012*y^6 + 2982*y^7 + 126*y^8) + x^6*(84*y^3 + 6916*y^4 + 79548*y^5 + 246092*y^6 + 246092*y^7 + 79548*y^8 + 6916*y^9 + 84*y^10) + x^7*(36*y^3 + 10900*y^4 + 312880*y^5 + 2322000*y^6 + 6002824*y^7 + 6002824*y^8 + 2322000*y^9 + 312880*y^10 + 10900*y^11 + 36*y^12) + x^8*(9*y^3 + 12717*y^4 + 864009*y^5 + 13617765*y^6 + 74916306*y^7 + 170048394*y^8 + 170048394*y^9 + 74916306*y^10 + 13617765*y^11 + 864009*y^12 + 12717*y^13 + 9*y^14) + x^9*(y^3 + 11421*y^4 + 1825786*y^5 + 57282026*y^6 + 604000555*y^7 + 2669115383*y^8 + 5489377628*y^9 + 5489377628*y^10 + 2669115383*y^11 + 604000555*y^12 + 57282026*y^13 + 1825786*y^14 + 11421*y^15 + y^16) + ...
This triangle begins:
[1];
[0, 1, 1];
[0, 0, 6, 6, 0];
[0, 0, 4, 56, 56, 4, 0];
[0, 0, 1, 117, 722, 722, 117, 1, 0];
[0, 0, 0, 126, 2982, 12012, 12012, 2982, 126, 0, 0];
[0, 0, 0, 84, 6916, 79548, 246092, 246092, 79548, 6916, 84, 0, 0];
[0, 0, 0, 36, 10900, 312880, 2322000, 6002824, 6002824, 2322000, 312880, 10900, 36, 0, 0];
[0, 0, 0, 9, 12717, 864009, 13617765, 74916306, 170048394, 170048394, 74916306, 13617765, 864009, 12717, 9, 0, 0];
[0, 0, 0, 1, 11421, 1825786, 57282026, 604000555, 2669115383, 5489377628, 5489377628, 2669115383, 604000555, 57282026, 1825786, 11421, 1, 0, 0]; ...
		

Crossrefs

Cf. A303921 (diagonal), A303922 (column sums), A001813 (row sums), A265936 (y=2), A173217.

Programs

  • PARI
    /* G.f. by Definition: */
    {T(n,k) = my(A = (1-y) * sum(m=0,2*n, y^m * (1 + x*(1-y)^2  +x*O(x^(2*n)) )^(m^2))); polcoeff(polcoeff(A, n,x),k,y)}
    for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", ")); print(""))
    
  • PARI
    /* Continued fraction expression: */
    {T(n,k) = my(CF=1, q = 1 + x*(1-y)^2 +x*O(x^(2*n))); for(k=0, n, CF = 1/(1 - q^(4*n-4*k+1)*y/(1 - q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*y*CF)) ); polcoeff(polcoeff((1-y)*CF, n,x),k,y)}
    for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", ")); print(""))
    
  • PARI
    /* G.f. by q-series identity: */
    {T(n,k) = my(A =1, q = 1 + x*(1-y)^2 +x*O(x^(2*n))); A = (1-y) * sum(m=0,2*n, y^m*q^m * prod(k=1,m, (1 - y*q^(4*k-3)) / (1 - y*q^(4*k-1) +x*O(x^(2*n))) )); polcoeff(polcoeff(A, n,x),k,y)}
    for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", ")); print(""))

Formula

GENERATING FUNCTIONS.
(1) A(x,y) = (1-y) * Sum_{n>=0} y^n * (1 + x*(1-y)^2)^(n^2).
(2) A(x,y) = (1-y) * Sum_{n>=0} y^n * q^n * Product_{k=1..n} (1 - q^(4*k-3)*y) / (1 - q^(4*k-1)*y), where q = 1 + x*(1-y)^2, due to a q-series identity.
(3) A(x,y) = (1-y)/(1 - q*y/(1 - q*(q^2-1)*y/(1 - q^5*y/(1 - q^3*(q^4-1)*y/(1 - q^9*y/(1- q^5*(q^6-1)*y/(1 - q^13*y/(1 - q^7*(q^8-1)*y/(1 - ...))))))))), where q = 1 + x*(1-y)^2, a continued fraction due to an identity of a partial elliptic theta function.
FORMULAS INVOLVING TERMS.
Sum_{k=0..2*n} T(n,k) = (2*n)!/n!, for n>=0 (row sums = A001813).
Sum_{k=0..2*n} T(n,k) * (-1)^k = 0, for n>=1 (symmetric rows).
Sum_{k=0..2*n} T(n,k) * 2^k = A265936(n), for n>=1.
Sum_{k=0..2*n} T(n,k) / 2^k = A173217(n) / 4^n, for n>=0.
Sum_{j=0..k^2} T(j,k) = A303922(k), for k>=0 (column sums).
T(n,n) = A303921(n), for n>=0 (diagonal).

A303921 Main diagonal of triangle A303920: a(n) = A303920(n,n) for n>=0.

Original entry on oeis.org

1, 1, 6, 56, 722, 12012, 246092, 6002824, 170048394, 5489377628, 198966923232, 8002061191632, 353657146741108, 17038311744899928, 888756685396257456, 49903123853737160256, 3001090647251938886634, 192456294604677056842812, 13110208254597852188752232, 945417747582856587884200944, 71952514694665595216762956518, 5763451519600988678663191769380
Offset: 0

Views

Author

Paul D. Hanna, May 02 2018

Keywords

Comments

G.f. of A303920: (1-y) * Sum_{n>=0} y^n * (1 + x*(1-y)^2)^(n^2) = Sum_{n>=0} Sum_{k=0..2*n} A303920(n,k)*x^n*y^k; this sequence is A303920(n,n) for n>=0.

Examples

			Triangle A303920 begins:
[1];
[0, 1, 1];
[0, 0, 6, 6, 0];
[0, 0, 4, 56, 56, 4, 0];
[0, 0, 1, 117, 722, 722, 117, 1, 0];
[0, 0, 0, 126, 2982, 12012, 12012, 2982, 126, 0, 0];
[0, 0, 0, 84, 6916, 79548, 246092, 246092, 79548, 6916, 84, 0, 0]; ...
the main diagonal of which forms this sequence; note that the row sums of A303920 equals A001813(n) = (2*n)!/n!.
		

Crossrefs

Formula

a(n) ~ sqrt(3) * 2^(2*n + 1/2) * n^(n - 1/2) / (sqrt(Pi) * exp(n)). - Vaclav Kotesovec, Oct 08 2019
Showing 1-2 of 2 results.