cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303946 Numbers that are neither squarefree nor perfect powers.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189
Offset: 1

Views

Author

Gus Wiseman, May 03 2018

Keywords

Comments

First differs from A059404 at a(40) = 147, A059404(40) = 144.
First differs from A126706 at a(6) = 40, A126706(6) = 36.

Crossrefs

Programs

  • Maple
    filter:= proc(n) local F;
    F:= map(t->t[2],ifactors(n)[2]);
    max(F)>1 and igcd(op(F))=1
    end proc:
    select(filter, [$1..1000]); # Robert Israel, May 06 2018
  • Mathematica
    Select[Range[200], !SquareFreeQ[#] && GCD@@FactorInteger[#][[All, 2]] == 1 &]
  • PARI
    isok(n) = !issquarefree(n) && !ispower(n); \\ Michel Marcus, May 05 2018
    
  • Python
    from math import isqrt
    from sympy import mobius, integer_nthroot
    def A303946(n):
        def f(x): return int(n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 19 2024

Formula

a(n) ~ n/k, where k = 1 - 1/zeta(2) = 1 - 6/Pi^2 = A229099. - Charles R Greathouse IV, Jun 01 2018