A303946 Numbers that are neither squarefree nor perfect powers.
12, 18, 20, 24, 28, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 68, 72, 75, 76, 80, 84, 88, 90, 92, 96, 98, 99, 104, 108, 112, 116, 117, 120, 124, 126, 132, 135, 136, 140, 147, 148, 150, 152, 153, 156, 160, 162, 164, 168, 171, 172, 175, 176, 180, 184, 188, 189
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
filter:= proc(n) local F; F:= map(t->t[2],ifactors(n)[2]); max(F)>1 and igcd(op(F))=1 end proc: select(filter, [$1..1000]); # Robert Israel, May 06 2018
-
Mathematica
Select[Range[200], !SquareFreeQ[#] && GCD@@FactorInteger[#][[All, 2]] == 1 &]
-
PARI
isok(n) = !issquarefree(n) && !ispower(n); \\ Michel Marcus, May 05 2018
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A303946(n): def f(x): return int(n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))-sum(mobius(k)*(integer_nthroot(x,k)[0]-1) for k in range(2,x.bit_length()))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Aug 19 2024
Formula
a(n) ~ n/k, where k = 1 - 1/zeta(2) = 1 - 6/Pi^2 = A229099. - Charles R Greathouse IV, Jun 01 2018
Comments