A303974 Regular triangle where T(n,k) is the number of aperiodic multisets of size k that fit within some normal multiset of size n.
1, 2, 1, 3, 3, 3, 4, 6, 10, 6, 5, 10, 22, 23, 15, 6, 15, 40, 57, 62, 27, 7, 21, 65, 115, 165, 129, 63, 8, 28, 98, 205, 356, 385, 318, 120, 9, 36, 140, 336, 676, 914, 1005, 676, 252, 10, 45, 192, 518, 1176, 1885, 2524, 2334, 1524, 495, 11, 55, 255, 762, 1918, 3528, 5495, 6319, 5607, 3261, 1023
Offset: 1
Examples
Triangle begins: 1 2 1 3 3 3 4 6 10 6 5 10 22 23 15 6 15 40 57 62 27 7 21 65 115 165 129 63 8 28 98 205 356 385 318 120 9 36 140 336 676 914 1005 676 252 The a(4,3) = 10 multisets: (112), (113), (122), (123), (124), (133), (134), (223), (233), (234). The a(5,4) = 23 multisets: (1112), (1222), (1113), (1123), (1223), (1233), (1333), (2223), (2333), (1124), (1134), (1224), (1234), (1244), (1334), (1344), (2234), (2334), (2344), (1235), (1245), (1345), (2345).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
Crossrefs
Programs
-
Mathematica
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; Table[Length/@GatherBy[Select[Union@@Rest/@Subsets/@allnorm[n],GCD@@Length/@Split[#]===1&],Length],{n,10}]
-
PARI
T(n,k)={sumdiv(k, d, moebius(k/d)*sum(i=1, d, binomial(d-1, i-1)*binomial(n-k+i, i)))} \\ Andrew Howroyd, Sep 18 2018
Formula
T(n,k) = Sum_{d|k} mu(k/d) * Sum_{i=1..d} binomial(d-1, i-1)*binomial(n-k+i, i). - Andrew Howroyd, Sep 18 2018
Extensions
Terms a(56) and beyond from Andrew Howroyd, Sep 18 2018
Comments