A210554
Triangle of coefficients of polynomials v(n,x) jointly generated with A208341; see the Formula section.
Original entry on oeis.org
1, 2, 2, 3, 5, 4, 4, 9, 12, 8, 5, 14, 25, 28, 16, 6, 20, 44, 66, 64, 32, 7, 27, 70, 129, 168, 144, 64, 8, 35, 104, 225, 360, 416, 320, 128, 9, 44, 147, 363, 681, 968, 1008, 704, 256, 10, 54, 200, 553, 1182, 1970, 2528, 2400, 1536, 512
Offset: 1
Triangle begins:
1;
2, 2;
3, 5, 4;
4, 9, 12, 8;
5, 14, 25, 28, 16;
6, 20, 44, 66, 64, 32;
7, 27, 70, 129, 168, 144, 64;
...
First three polynomials v(n,x): 1, 2 + 2x , 3 + 5x + 4x^2.
The T(3, 1) = 3 multisets: (1), (2), (3).
The T(3, 2) = 5 multisets: (11), (12), (13), (22), (23).
The T(3, 3) = 4 multisets: (111), (112), (122), (123).
-
T := (n,k) -> simplify((n + 1 - k)*hypergeom([1 - k, -k + n + 2], [2], -1)):
seq(seq(T(n,k), k=1..n), n=1..10); # Peter Luschny, Sep 18 2018
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208341 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210554 *)
-
T(n,k)={sum(i=1, k, binomial(k-1, i-1)*binomial(n-k+i, i))} \\ Andrew Howroyd, Sep 18 2018
A303976
Number of different aperiodic multisets that fit within some normal multiset of size n.
Original entry on oeis.org
1, 3, 9, 26, 75, 207, 565, 1518, 4044, 10703, 28234, 74277, 195103, 511902, 1342147, 3517239, 9214412, 24134528, 63204417, 165505811, 433361425, 1134664831, 2970787794, 7777975396, 20363634815, 53313819160, 139579420528, 365427311171, 956707667616, 2504704955181
Offset: 1
The a(4) = 26 aperiodic multisets:
(1), (2), (3), (4),
(12), (13), (14), (23), (24), (34),
(112), (113), (122), (123), (124), (133), (134), (223), (233), (234),
(1112), (1123), (1222), (1223), (1233), (1234).
Cf.
A000740,
A000837,
A007916,
A027941,
A178472,
A210554,
A301700,
A303431,
A303546,
A303551,
A303945.
-
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
Table[Length[Select[Union@@Rest/@Subsets/@allnorm[n],GCD@@Length/@Split[#]===1&]],{n,10}]
-
seq(n)={Vec(sum(d=1, n, moebius(d)*x^d/(1 - x - x^d*(2-x)) + O(x*x^n))/(1-x))} \\ Andrew Howroyd, Feb 04 2021
A304623
Regular triangle where T(n,k) is the number of aperiodic multisets with maximum k that fit within some normal multiset of weight n.
Original entry on oeis.org
1, 1, 2, 1, 4, 4, 1, 6, 11, 8, 1, 10, 21, 27, 16, 1, 12, 38, 61, 63, 32, 1, 18, 57, 120, 162, 143, 64, 1, 22, 87, 205, 347, 409, 319, 128, 1, 28, 122, 333, 651, 950, 1000, 703, 256, 1, 32, 164, 506, 1132, 1926, 2504, 2391, 1535, 512, 1, 42, 217, 734, 1840
Offset: 1
Triangle begins:
1
1 2
1 4 4
1 6 11 8
1 10 21 27 16
1 12 38 61 63 32
1 18 57 120 162 143 64
1 22 87 205 347 409 319 128
The a(4,3) = 11 multisets are (3), (13), (23), (113), (123), (133), (223), (233), (1123), (1223), (1233).
Cf.
A000740,
A000837,
A001597,
A007716,
A007916,
A027941,
A178472,
A210554,
A301700,
A303431,
A303546,
A303551,
A303945,
A303974.
-
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
Table[Length/@GatherBy[Select[Union@@Rest/@Subsets/@allnorm[n],GCD@@Length/@Split[#]===1&],Max],{n,10}]
-
T(n,k) = sum(j=1, n, sumdiv(j, d, sum(i=max(1, j+k-n), d, moebius(j/d)*binomial(k-1, i-1)*binomial(d-1, i-1)))) \\ Andrew Howroyd, Jan 20 2023
A304648
Number of different periodic multisets that fit within some normal multiset of weight n.
Original entry on oeis.org
0, 1, 3, 7, 13, 25, 44, 78, 136, 242, 422, 747, 1314, 2326, 4121, 7338, 13052, 23288, 41568, 74329, 133011, 238338, 427278, 766652, 1376258, 2472012, 4441916, 7984990, 14358424, 25826779, 46465956, 83616962, 150497816, 270917035, 487753034, 878244512
Offset: 1
The a(5) = 13 periodic multisets:
(11), (22), (33), (44),
(111), (222), (333),
(1111), (1122), (1133), (2222), (2233),
(11111).
-
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
Table[Length[Select[Union@@Rest/@Subsets/@allnorm[n],GCD@@Length/@Split[#]>1&]],{n,10}]
-
seq(n)=Vec(sum(d=2, n, -moebius(d)*x^d/(1 - x - x^d*(2-x)) + O(x*x^n))/(1-x), -n) \\ Andrew Howroyd, Feb 04 2021
Showing 1-4 of 4 results.
Comments