A303976 Number of different aperiodic multisets that fit within some normal multiset of size n.
1, 3, 9, 26, 75, 207, 565, 1518, 4044, 10703, 28234, 74277, 195103, 511902, 1342147, 3517239, 9214412, 24134528, 63204417, 165505811, 433361425, 1134664831, 2970787794, 7777975396, 20363634815, 53313819160, 139579420528, 365427311171, 956707667616, 2504704955181
Offset: 1
Keywords
Examples
The a(4) = 26 aperiodic multisets: (1), (2), (3), (4), (12), (13), (14), (23), (24), (34), (112), (113), (122), (123), (124), (133), (134), (223), (233), (234), (1112), (1123), (1222), (1223), (1233), (1234).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
Mathematica
allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]; Table[Length[Select[Union@@Rest/@Subsets/@allnorm[n],GCD@@Length/@Split[#]===1&]],{n,10}]
-
PARI
seq(n)={Vec(sum(d=1, n, moebius(d)*x^d/(1 - x - x^d*(2-x)) + O(x*x^n))/(1-x))} \\ Andrew Howroyd, Feb 04 2021
Formula
a(n) = Sum_{k=1..n} Sum_{d|k} mu(k/d) * Sum_{i=1..d} binomial(d-1, i-1)*binomial(n-k+i, i). - Andrew Howroyd, Sep 18 2018
G.f.: Sum_{d>=1} mu(d)*x^d/((1 - x - x^d*(2-x))*(1-x)). - Andrew Howroyd, Feb 04 2021
Extensions
Terms a(13) and beyond from Andrew Howroyd, Sep 18 2018
Comments