cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A303980 a(n) is the number of cyclic permutations that admit a [1,1,-1]-gridding.

Original entry on oeis.org

1, 1, 1, 2, 5, 15, 42, 120, 338, 952, 2671, 7494, 21035, 59115, 166432, 469560, 1327802, 3763545, 10692500, 30447858, 86894361, 248506757, 712109662, 2044402512, 5879579540, 16937048040, 48864612667, 141179970820, 408444645375, 1183143522435, 3431241484224, 9961919944284
Offset: 0

Views

Author

Kassie Archer, May 03 2018

Keywords

Comments

a(n) is the number of cyclic permutations that, when written in their one-line notation, is composed of an increasing segment, followed by another increasing segment, followed by a decreasing segment.

Crossrefs

Programs

  • PARI
    t051168(n, k) = if (n==0, 1, (1/n) * sumdiv(gcd(n, k), d, moebius(d) * binomial(n/d, k/d)));
    T303979(n, k) = my(t=sum(j=1, k-1, (-1)^(k+j+1)*t051168(n, j))); if (!(n % 2), t += (-1)^(k+1)*sum(j=1, k-1, if (((n-j) % 4) == 2, t051168(n/2, j/2)))); t;
    a027376(n) = if(n<1, n==0, sumdiv(n, d, moebius(n/d)*3^d)/n);
    a006575(n) = sumdiv( n, d, if ( bitand(d, 1), moebius(d) * (3^(n/d)-1) , 0 ) ) / (2*n);
    a(n) = if (n <= 2, 1, res = a027376(n)/2 - sum(i=2, n-1, i*T303979(n,i)); if (!(n%2), res += a006575(n/2)/2); res); \\ Michel Marcus, May 16 2018

Formula

a(n) = A027376(n)/2 - Sum_{i=2..n-1} i*A303979(n,i) when n is odd and n>2.
a(n) = (A027376(n)+A006575(n/2))/2 - Sum_{i=2..n-1} i*A303979(n,i) when n is even and n>2.

Extensions

More terms from Michel Marcus, May 16 2018