A304134 Number of partitions of 5n into exactly n parts.
1, 1, 5, 19, 64, 192, 532, 1367, 3319, 7657, 16928, 36043, 74287, 148702, 290071, 552767, 1031391, 1887776, 3395084, 6007963, 10474462, 18010859, 30574655, 51284587, 85064661, 139620591, 226914505, 365371100, 583164222, 923075291, 1449643115, 2259616844
Offset: 0
Keywords
Examples
n | Partitions of 5n into exactly n parts --+------------------------------------------------ 1 | 5; 2 | 9+1, 8+2, 7+3, 6+4, 5+5; 3 | 13+1+1, 12+2+1, 11+3+1, 11+2+2, 10+4+1, 10+3+2, | 9+5+1, 9+4+2, 9+3+3, 8+6+1, 8+5+2, 8+4+3, | 7+7+1, 7+6+2, 7+5+3, 7+4+4, 6+6+3, 6+5+4, | 5+5+5; ==================================================================== n | Partitions of 4n in which every part is <=n. --+----------------------------------------------------------------- 1 | 1+1+1+1; 2 | 2+2+2+2, 2+2+2+1+1, 2+2+1+1+1+1, 2+1+1+1+1+1+1, 1+1+1+1+1+1+1+1; 3 | 3+3+3+3, 3+3+3+2+1, 3+3+3+1+1+1, 3+3+2+2+2, 3+3+2+2+1+1, | 3+3+2+1+1+1+1, 3+3+1+1+1+1+1+1, 3+2+2+2+2+1, 3+2+2+2+1+1+1, | 3+2+2+1+1+1+1+1, 3+2+1+1+1+1+1+1+1, 3+1+1+1+1+1+1+1+1+1, | 2+2+2+2+2+2, 2+2+2+2+2+1+1, 2+2+2+2+1+1+1+1, 2+2+2+1+1+1+1+1+1, | 2+2+1+1+1+1+1+1+1+1, 2+1+1+1+1+1+1+1+1+1+1, | 1+1+1+1+1+1+1+1+1+1+1+1;
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3000 (first 501 terms from Seiichi Manyama)
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, i-1) +b(n-i, min(i, n-i))) end: a:= n-> b(4*n, n): seq(a(n), n=0..35); # Alois P. Heinz, May 07 2018
-
Mathematica
b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + b[n-i, Min[i, n-i]]]; a[n_] := b[4n, n]; a /@ Range[0, 35] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
-
PARI
{a(n) = polcoeff(prod(k=1, n, 1/(1-x^k+x*O(x^(4*n)))), 4*n)}
Extensions
More terms from Alois P. Heinz, May 07 2018
Comments