A304162 a(n) = n^4 - 3*n^3 + 9*n^2 - 7*n + 5 (n>=1).
5, 19, 65, 185, 445, 935, 1769, 3085, 5045, 7835, 11665, 16769, 23405, 31855, 42425, 55445, 71269, 90275, 112865, 139465, 170525, 206519, 247945, 295325, 349205, 410155, 478769, 555665, 641485, 736895, 842585, 959269, 1087685, 1228595, 1382785
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- D. Stevanovic, I. Stankovic, and M. Milosevic, More on the relation between energy and Laplacian energy of graphs, MATCH Commun. Math. Comput. Chem. 61, 2009, 395-401.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A304161.
Programs
-
GAP
List([1..40],n->n^4-3*n^3+9*n^2-7*n+5); # Muniru A Asiru, May 10 2018
-
Maple
seq(n^4-3*n^3+9*n^2-7*n+5, n = 1 .. 40);
-
Mathematica
Table[n (n - 1) (n^2 - 2 n + 7) + 5, {n, 1, 40}] (* Bruno Berselli, May 10 2018 *)
-
PARI
Vec(x*(5 - 6*x + 20*x^2 + 5*x^4) / (1 - x)^5 + O(x^60)) \\ Colin Barker, May 10 2018
Formula
From Colin Barker, May 10 2018: (Start)
G.f.: x*(5 - 6*x + 20*x^2 + 5*x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
Comments