cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304162 a(n) = n^4 - 3*n^3 + 9*n^2 - 7*n + 5 (n>=1).

Original entry on oeis.org

5, 19, 65, 185, 445, 935, 1769, 3085, 5045, 7835, 11665, 16769, 23405, 31855, 42425, 55445, 71269, 90275, 112865, 139465, 170525, 206519, 247945, 295325, 349205, 410155, 478769, 555665, 641485, 736895, 842585, 959269, 1087685, 1228595, 1382785
Offset: 1

Views

Author

Emeric Deutsch, May 10 2018

Keywords

Comments

For n>=2, a(n) is the second Zagreb index of the graph KK_n, defined as 2 copies of the complete graph K_n, with one vertex from one copy joined to two vertices of the other copy (see the Stevanovic et al. reference, p. 396).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of KK_n is M(KK_n; x,y) = (n-2)^2*x^(n-1)*y^(n-1) + 2*(n-2)*x^(n-1)*y^n + (n-1)*x^(n-1)*y^(n+1) + x^n*y^n + 2*x^n*y^(n+1).

Crossrefs

Cf. A304161.

Programs

  • GAP
    List([1..40],n->n^4-3*n^3+9*n^2-7*n+5); # Muniru A Asiru, May 10 2018
  • Maple
    seq(n^4-3*n^3+9*n^2-7*n+5, n = 1 .. 40);
  • Mathematica
    Table[n (n - 1) (n^2 - 2 n + 7) + 5, {n, 1, 40}] (* Bruno Berselli, May 10 2018 *)
  • PARI
    Vec(x*(5 - 6*x + 20*x^2 + 5*x^4) / (1 - x)^5 + O(x^60)) \\ Colin Barker, May 10 2018
    

Formula

From Colin Barker, May 10 2018: (Start)
G.f.: x*(5 - 6*x + 20*x^2 + 5*x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)