A304173 Number of rooted plane trees where every branch that has a predecessor (a branch directly to its left and emanating from the same root) has at least as many leaves as its predecessor.
1, 1, 2, 5, 13, 34, 90, 242, 660, 1822, 5085, 14333, 40759, 116817, 337140, 979098, 2859439, 8393113, 24747052, 73262246, 217681621, 648939319, 1940461444, 5818595438, 17492367097, 52712114792, 159193762250, 481754196170, 1460650624068, 4436422703787, 13496947320929
Offset: 1
Keywords
Examples
The a(5) = 13 plane trees: ((((o)))), (((oo))), (((o)o)), ((o(o))), ((ooo)), (((o))o), (o((o))), (o(oo)), ((o)(o)), ((o)oo), (o(o)o), (oo(o)), (oooo). Missing from this list is ((oo)o).
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..200
Crossrefs
Programs
-
Mathematica
pplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[pplane/@c],OrderedQ[Count[#,{},{0,Infinity}]&/@#]&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; Table[Length[pplane[n]],{n,10}]
-
PARI
seq(n)={my(p=x*y+O(x^2)); for(n=2, n, p=x*(y-1 + 1/prod(k=1, n-1, 1 - y^k*polcoef(p,k,y)))); Vec(subst(p,y,1))} \\ Andrew Howroyd, Jan 22 2021
Formula
G.f.: A(x,1) where A(x,y) satisfies A(x,y) = x*(y-1 + 1/(Product_{k>=1} 1 - y^k * [y^k] A(x,y))). - Andrew Howroyd, Jan 22 2021
Extensions
Terms a(15) and beyond from Andrew Howroyd, Jan 22 2021