A032200
Number of rooted compound windmills (mobiles) of n nodes.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 51, 128, 345, 940, 2632, 7450, 21434, 62174, 182146, 537369, 1596133, 4767379, 14312919, 43162856, 130695821, 397184252, 1211057426, 3703794849, 11358759346, 34923477315, 107627138308, 332404636811
Offset: 1
From _Gus Wiseman_, Sep 05 2018: (Start)
The a(5) = 9 locally necklace plane trees:
((((o))))
(((oo)))
((o(o)))
(o((o)))
((o)(o))
((ooo))
(o(oo))
(oo(o))
(oooo)
(End)
- F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 241 (3.3.84).
-
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And];
neckplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[neckplane/@c],neckQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[neckplane[n]],{n,10}] (* Gus Wiseman, Sep 05 2018 *)
-
CIK(p,n)={sum(d=1, n, eulerphi(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
seq(n)={my(p=O(1));for(i=1, n, p=1+CIK(x*p, i)); Vec(p)} \\ Andrew Howroyd, Jun 20 2018
A032171
Number of rooted compound windmills (mobiles) of n nodes with no symmetries.
Original entry on oeis.org
1, 1, 1, 2, 4, 10, 23, 59, 148, 385, 1006, 2678, 7170, 19421, 52933, 145364, 401421, 1114713, 3109710, 8713076, 24506121, 69168705, 195849114, 556165311, 1583601840, 4520226558, 12931917204, 37075154703
Offset: 1
From _Gus Wiseman_, Sep 05 2018: (Start)
The a(6) = 10 locally Lyndon plane trees:
(((((o)))))
(((o(o))))
((o((o))))
(o(((o))))
((o)((o)))
((oo(o)))
(o(o(o)))
(oo((o)))
(o(o)(o))
(ooo(o))
(End)
-
T[n_, k_] := Module[{A}, A[, ] = 0; If[k < 1 || k > n, 0, For[j = 1, j <= n, j++, A[x_, y_] = x*y - x*Sum[MoebiusMu[i]/i * Log[1 - A [x^i, y^i]] + O[x]^j // Normal , {i, 1, j}]]; Coefficient[Coefficient[A[x, y], x, n], y, k]]];
a[n_] := a[n] = Sum[T[n, k], {k, 1, n}];
Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 28}] (* Jean-François Alcover, Jun 30 2017, using Michael Somos' code for A055363 *)
LyndonQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]&&Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
lynplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[lynplane/@c],LyndonQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[lynplane[n]],{n,10}] (* Gus Wiseman, Sep 05 2018 *)
-
CHK(p,n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
seq(n)={my(p=O(1));for(i=1, n, p=1+CHK(x*p, i)); Vec(p)} \\ Andrew Howroyd, Jun 20 2018
A304175
Number of leaf-balanced rooted plane trees with n nodes.
Original entry on oeis.org
1, 1, 2, 5, 12, 27, 59, 128, 277, 597, 1280, 2730, 5794, 12248, 25836, 54508, 115222, 244144, 518104, 1099499, 2330326, 4930089, 10415135, 21992400, 46470911, 98353146, 208580686, 443186181, 942988423, 2007981801, 4276830431, 9109431322, 19404918449, 41357252072, 88236092543
Offset: 1
The a(5) = 12 leaf-balanced plane trees:
((((o)))), (((oo))), (((o)o)), ((o(o))), ((ooo)),
(((o))o), (o((o))), ((o)(o)),
((o)oo), (o(o)o), (oo(o)),
(oooo).
Missing from this list are ((oo)o) and (o(oo)).
-
lbplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[lbplane/@c],SameQ@@(Count[#,{},{0,Infinity}]&/@#)&],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[lbplane[n]],{n,10}]
-
seq(n)={my(v=vector(n)); v[1]=x/(1-x) + O(x*x^n); for(k=2, n, v[k]=x*sumdiv(k, d, if(dAndrew Howroyd, Dec 13 2020
A317852
Number of plane trees with n nodes where the sequence of branches directly under any given node is aperiodic, meaning its cyclic permutations are all different.
Original entry on oeis.org
1, 1, 1, 3, 8, 26, 76, 247, 783, 2565, 8447, 28256, 95168, 323720, 1108415, 3821144, 13246307, 46158480, 161574043, 567925140, 2003653016, 7092953340, 25186731980, 89690452750, 320221033370, 1146028762599, 4110596336036, 14774346783745, 53203889807764, 191934931634880
Offset: 1
The a(5) = 8 locally aperiodic plane trees:
((((o)))),
(((o)o)), ((o(o))), (((o))o), (o((o))),
((o)oo), (o(o)o), (oo(o)).
The a(6) = 26 locally aperiodic plane trees:
(((((o))))) ((((o)o))) (((o)oo)) ((o)ooo)
(((o(o)))) ((o(o)o)) (o(o)oo)
((((o))o)) ((oo(o))) (oo(o)o)
((o((o)))) (((o)o)o) (ooo(o))
((((o)))o) ((o(o))o)
(o(((o)))) (o((o)o))
(((o))(o)) (o(o(o)))
((o)((o))) (((o))oo)
(o((o))o)
(oo((o)))
((o)(o)o)
((o)o(o))
(o(o)(o))
Cf.
A000108,
A000837,
A007853,
A032171,
A032200,
A254040,
A301700,
A303386,
A303431,
A304173,
A304175,
A317708,
A317852.
-
aperQ[q_]:=Array[RotateRight[q,#]&,Length[q],1,UnsameQ];
aperplane[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[aperplane/@c],aperQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
Table[Length[aperplane[n]],{n,10}]
-
Tfm(p, n)={sum(d=1, n, moebius(d)*(subst(1/(1+O(x*x^(n\d))-p), x, x^d)-1))}
seq(n)={my(p=O(1)); for(i=1, n, p=1+Tfm(x*p, i)); Vec(p)} \\ Andrew Howroyd, Feb 08 2020
A319123
Number of series-reduced plane trees with n leaves such that each branch directly under any given node has a different number of leaves.
Original entry on oeis.org
1, 1, 3, 7, 21, 75, 277, 1083, 4419, 18493, 77729, 332557, 1444477, 6307225, 27912147, 123878207, 554733045, 2492087531, 11280537097, 51120499279, 233319480419, 1065835004917, 4895443823281, 22505853359485, 103958158302085, 480365303903637, 2229412587062123
Offset: 1
The a(4) = 7 plane trees:
(oooo)
(o(ooo))
((ooo)o)
(o(o(oo)))
(o((oo)o))
((o(oo))o)
(((oo)o)o)
Cf.
A000108,
A001003,
A007853,
A074206,
A118376,
A273873,
A277130,
A281113,
A304173,
A304175,
A319122.
-
b[n_]:=b[n]=1+Sum[Times@@b/@f,{f,Join@@Permutations/@Select[IntegerPartitions[n],And[Length[#]>1,UnsameQ@@#]&]}];
Array[b,30]
Showing 1-5 of 5 results.
Comments