cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A132615 Triangle T, read by rows, where row n+1 of T = row n of T^(2n-1) with appended '1' for n>=0 with T(0,0)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 6, 3, 1, 1, 80, 25, 5, 1, 1, 1666, 378, 56, 7, 1, 1, 47232, 8460, 1020, 99, 9, 1, 1, 1694704, 252087, 26015, 2134, 154, 11, 1, 1, 73552752, 9392890, 855478, 61919, 3848, 221, 13, 1, 1, 3744491970, 420142350, 34461260, 2257413, 125760, 6290, 300, 15, 1, 1
Offset: 0

Views

Author

Paul D. Hanna, Aug 24 2007

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 1, 1;
  6, 3, 1, 1;
  80, 25, 5, 1, 1;
  1666, 378, 56, 7, 1, 1;
  47232, 8460, 1020, 99, 9, 1, 1;
  1694704, 252087, 26015, 2134, 154, 11, 1, 1;
  73552752, 9392890, 855478, 61919, 3848, 221, 13, 1, 1; ...
GENERATE T FROM ODD MATRIX POWERS OF T.
Matrix cube, T^3, begins:
  1;
  3, 1;
  6, 3, 1; <-- row 3 of T
  31, 12, 3, 1;
  357, 100, 18, 3, 1;
  6786, 1455, 205, 24, 3, 1; ...
where row 3 of T = row 2 of T^3 with appended '1'.
Matrix fifth power, T^5, begins:
  1;
  5, 1;
  15, 5, 1;
  80, 25, 5, 1; <-- row 4 of T
  855, 215, 35, 5, 1;
  15171, 3065, 410, 45, 5, 1; ...
where row 4 of T = row 3 of T^5 with appended '1'.
Matrix seventh power, T^7, begins:
  1;
  7, 1;
  28, 7, 1;
  161, 42, 7, 1;
  1666, 378, 56, 7, 1; <-- row 5 of T
  28119, 5348, 679, 70, 7, 1; ...
where row 5 of T = row 4 of T^7 with appended '1'.
ALTERNATE GENERATING METHOD.
Row 4: start with a '1' followed by 4 zeros;
take partial sums and append 2 zeros; then
take partial sums thrice more:
  (1), 0, 0, 0, 0;
  1, 1, 1, 1, (1), 0, 0;
  1, 2, 3, 4, 5, 5, (5);
  1, 3, 6, 10, 15, 20, (25);
  1, 4, 10, 20, 35, 55, (80);
the final nonzero terms form row 4: [80, 25, 5, 1, 1].
Row 5: start with a '1' followed by 6 zeros;
take partial sums and append 4 zeros;
take partial sums and append 2 zeros; then
take partial sums thrice more:
  (1), 0, 0, 0, 0, 0, 0;
  1, 1, 1, 1, 1, 1, (1), 0, 0, 0, 0;
  1, 2, 3, 4, 5, 6, 7, 7, 7, 7, (7), 0, 0;
  1, 3, 6, 10, 15, 21, 28, 35, 42, 49, 56, 56, (56);
  1, 4, 10, 20, 35, 56, 84, 119, 161, 210, 266, 322, (378);
  1, 5, 15, 35, 70, 126, 210, 329, 490, 700, 966, 1288, (1666);
the final nonzero terms form row 5: [1666, 378, 56, 7, 1, 1].
Continuing in this way produces all the rows of this triangle.
		

Crossrefs

Cf. columns: A132616, A132617, A132618; A132619; variants: A132610, A101479.

Programs

  • Maple
    b:= proc(n) option remember;
          Matrix(n, (i,j)-> T(i-1,j-1))^(2*n-3)
        end:
    T:= proc(n,k) option remember;
         `if`(n=k, 1, `if`(k>n, 0, b(n)[n,k+1]))
        end:
    seq(seq(T(n,k), k=0..n), n=0..10);  # Alois P. Heinz, Apr 13 2020
  • Mathematica
    b[n_] := b[n] = MatrixPower[Table[T[i-1, j-1], {i, n}, {j, n}], 2n-3];
    T[n_, k_] := T[n, k] = If[n == k, 1, If[k > n, 0, b[n][[n, k + 1]]]];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 27 2020, after Alois P. Heinz *)
  • PARI
    {T(n, k)=local(A=vector(n+1), p); A[1]=1; for(j=1, n-k-1, p=(n-1)*(n-2)-(n-j-1)*(n-j-2); A=Vec((Polrev(A)+x*O(x^p))/(1-x))); A=Vec((Polrev(A)+x*O(x^p))/(1-x)); A[p+1]}

Formula

T(n+1,1) is divisible by 2n-1 for n>=1.

A304192 G.f. A(x) satisfies: [x^n] (1+x)^(n*(n+1)) / A(x) = 0 for n>0.

Original entry on oeis.org

1, 2, 7, 72, 1224, 29184, 892074, 33144288, 1445847756, 72291575784, 4070550314292, 254674699992768, 17518238545282080, 1313558965998605568, 106608039857256267192, 9309469431887521270848, 870250987085629018699728, 86703492688056304091302944, 9171254392641669833788501488, 1026466161170552167031522911104
Offset: 0

Views

Author

Paul D. Hanna, May 07 2018

Keywords

Comments

Note that: [x^n] (1+x)^(n*k) / G(x) = 0 for n>0 holds when G(x) = (1+x)/(1 - (k-1)*x) given some fixed k ; this sequence explores the case where k varies with n.

Examples

			G.f.: A(x) = 1 + 2*x + 7*x^2 + 72*x^3 + 1224*x^4 + 29184*x^5 + 892074*x^6 + 33144288*x^7 + 1445847756*x^8 + 72291575784*x^9 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (1+x)^(n*(n+1)) / A(x) begins:
n=0: [1, -2, -3, -52, -955, -24246, -771113, -29428232, ...];
n=1: [1, 0, -6, -60, -1062, -26208, -820560, -30994704, ...];
n=2: [1, 4, 0, -80, -1337, -30840, -932010, -34438500, ...];
n=3: [1, 10, 39, 0, -1722, -39996, -1138680, -40521096, ...];
n=4: [1, 18, 147, 648, 0, -50832, -1503546, -50844384, ...];
n=5: [1, 28, 372, 3048, 15465, 0, -1898490, -67990260, ...];
n=6: [1, 40, 774, 9580, 83248, 483240, 0, -85539792, ...];
n=7: [1, 54, 1425, 24420, 303363, 2844270, 18685905, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1+x)^(n*(n+1)) / A(x) = 0 for n>0.
RELATED SEQUENCES.
The secondary diagonal in the above table that begins
[1, 4, 39, 648, 15465, 483240, 18685905, 861282832, 46085893011, ...]
yields A132612, column 1 of triangle A132610.
Related triangular matrix T = A132610 begins:
1;
1, 1;
2, 1, 1;
14, 4, 1, 1;
194, 39, 6, 1, 1;
4114, 648, 76, 8, 1, 1;
118042, 15465, 1510, 125, 10, 1, 1;
4274612, 483240, 41121, 2908, 186, 12, 1, 1;
186932958, 18685905, 1424178, 89670, 4970, 259, 14, 1, 1; ...
in which  row n+1 of T = row n of matrix power T^(2*n) with appended '1' for n>=0.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); m=#A; A[m] = Vec( (1+x +x*O(x^m))^(m*(m-1))/Ser(A) )[m] ); A[n+1]}
    for(n=0,30, print1(a(n),", "))

Formula

A132612(n+1) = [x^n] (1+x)^((n+1)*(n+2)) / A(x) for n>0.

A304191 G.f. A(x) satisfies: [x^n] (1+x)^(n^2) / A(x) = 0 for n > 0.

Original entry on oeis.org

1, 1, 3, 35, 611, 14691, 448873, 16606825, 720241161, 35786093321, 2002505540123, 124546575282555, 8520012343770331, 635618668572015451, 51348334729127568273, 4465119223213849398545, 415808496978034659793361, 41283870149540066960271441, 4353184675864365012327673843, 485828603554439779231472806675
Offset: 0

Views

Author

Paul D. Hanna, May 07 2018

Keywords

Comments

Note that [x^n] (1+x)^(n*k) / G(x) = 0 for n > 0 holds when G(x) = (1+x)/(1 - (k-1)*x) given some fixed k; this sequence explores the case where k varies with n.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 35*x^3 + 611*x^4 + 14691*x^5 + 448873*x^6 + 16606825*x^7 + 720241161*x^8 + 35786093321*x^9 + 2002505540123*x^10 + ...
ILLUSTRATION OF DEFINITION.
(EX. 1) The table of coefficients of x^k in (1+x)^(n^2) / A(x) begins:
n=0: [1, -1,   -2,   -30,   -540,  -13380, -416910, -15634290, ...];
n=1: [1,  0,   -3,   -32,   -570,  -13920, -430290, -16051200, ...];
n=2: [1,  3,    0,   -40,   -675,  -15729, -473792, -17384400, ...];
n=3: [1,  8,   25,     0,   -840,  -19488, -559584, -19917600, ...];
n=4: [1, 15,  102,   378,      0,  -24192, -712590, -24272754, ...];
n=5: [1, 24,  273,  1920,   8460,       0, -883740, -31495200, ...];
n=6: [1, 35,  592,  6408,  48885,  252087,       0, -39049296, ...];
n=7: [1, 48, 1125, 17120, 189090, 1583040, 9392890,         0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1+x)^(n^2) / A(x) = 0 for n > 0.
RELATED SEQUENCES.
(EX. 2) The secondary diagonal in the above table (EX. 1) that begins
[1, 3, 25, 378, 8460, 252087, 9392890, 420142350, ...]
yields A132617, column 1 of triangle A132615.
Related triangular matrix T = A132615 begins:
         1;
         1,       1;
         1,       1,      1;
         6,       3,      1,     1;
        80,      25,      5,     1,    1;
      1666,     378,     56,     7,    1,   1;
     47232,    8460,   1020,    99,    9,   1,  1;
   1694704,  252087,  26015,  2134,  154,  11,  1, 1;
  73552752, 9392890, 855478, 61919, 3848, 221, 13, 1, 1; ...
in which row n equals row (n-1) of T^(2*n-1) followed by '1' for n > 0.
(EX. 3) The next diagonal in the table (EX. 1) that begins:
[1, 8, 102, 1920, 48885, 1583040, 1583040, 62467314, ...]
yields the first column in the following matrix product.
Let TSL(m) denote the table T = A132615, with the diagonal of 1's truncated, as SHIFTED LEFT m times, so that
TSL(1) begins
  [   1];
  [   3,    1];
  [  25,    5,  1];
  [ 378,   56,  7, 1];
  [8460, 1020, 99, 9, 1]; ...
TSL(2) begins
  [    1];
  [    5,    1];
  [   56,    7,   1];
  [ 1020,   99,   9,  1];
  [26015, 2134, 154, 11, 1]; ...
etc.,
then the matrix product TSL(2)*TSL(1) begins
  [       1];
  [       8,       1];
  [     102,      12,      1];
  [    1920,     200,     16,     1];
  [   48885,    4540,    330,    20,   1];
  [ 1583040,  132810,   8816,   492,  24,  1];
  [62467314, 4790156, 293419, 15148, 686, 28, 1]; ...
in which the first column equals the secondary diagonal in the table of (EX. 1).
The subsequent diagonal in the table of (EX. 1) also equals the first column of matrix product TSL(3)*TSL(2)*TSL(1). This process can be continued to produce all the lower diagonals of the table of (EX. 1).
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); m=#A; A[m] = Vec( (1+x +x*O(x^m))^((m-1)^2)/Ser(A) )[m] ); A[n+1]}
    for(n=0,30, print1(a(n),", "))

Formula

A132617(n+1) = [x^n] (1+x)^((n+1)^2) / A(x) for n >= 0.

A304188 G.f. A(x) satisfies: [x^n] (1+x)^((n+1)*(n+2)) / A(x) = 0 for n>0.

Original entry on oeis.org

1, 6, 30, 264, 4179, 97758, 3000084, 113020056, 5018695542, 255724146876, 14671199172480, 934467807541824, 65366076594301044, 4978197982191048600, 409875168025688997456, 36268233577292228677728, 3431775207222740657912472, 345742547371677388835049744, 36948141363745699171977916032, 4174429749114285739841190548928
Offset: 0

Views

Author

Paul D. Hanna, May 09 2018

Keywords

Examples

			G.f.: A(x) = 1 + 6*x + 30*x^2 + 264*x^3 + 4179*x^4 + 97758*x^5 + 3000084*x^6 + 113020056*x^7 + 5018695542*x^8 + 255724146876*x^9 + 14671199172480*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (1+x)^((n+1)*(n+2)) / A(x) begins:
n=0: [1, -4, -5, -114, -2289, -62568, -2113983, -84889290, ...];
n=1: [1, 0, -15, -154, -2790, -72432, -2378450, -93729900, ...];
n=2: [1, 6, 0, -224, -3924, -91776, -2858196, -109145280, ...];
n=3: [1, 14, 76, 0, -5310, -128964, -3714456, -134815824, ...];
n=4: [1, 24, 261, 1510, 0, -169752, -5223348, -178378752, ...];
n=5: [1, 36, 615, 6446, 41121, 0, -6779045, -251285430, ...];
n=6: [1, 50, 1210, 18696, 201435, 1424178, 0, -323428800, ...];
n=7: [1, 66, 2130, 44616, 675591, 7663626, 59857416, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1+x)^((n+1)*(n+2)) / A(x) = 0 for n>0.
RELATED SEQUENCES.
The secondary diagonal in the above table that begins
[1, 6, 76, 1510, 41121, 1424178, 59857416, 2957282370, ...]
yields A132613, column 2 of triangle A132610.
Related triangular matrix T = A132610 begins:
1;
1, 1;
2, 1, 1;
14, 4, 1, 1;
194, 39, 6, 1, 1;
4114, 648, 76, 8, 1, 1;
118042, 15465, 1510, 125, 10, 1, 1;
4274612, 483240, 41121, 2908, 186, 12, 1, 1;
186932958, 18685905, 1424178, 89670, 4970, 259, 14, 1, 1; ...
in which  row n+1 of T = row n of matrix power T^(2*n) with appended '1' for n>=0.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( (1+x +x*O(x^m))^(m*(m+1))/Ser(A) )[m] ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

A132613(n+1) = [x^n] (1+x)^((n+2)*(n+3)) / A(x) for n>0.

A304190 G.f. A(x) satisfies: [x^n] (1+x)^((n-1)^2) / A(x) = 0 for n>0.

Original entry on oeis.org

1, 0, 0, 4, 90, 2448, 79716, 3058740, 135637242, 6835557984, 386119895256, 24170805494868, 1661105052140226, 124342746871407984, 10070793262851698412, 877493877654988612836, 81848857574562663295026, 8137513480199793111630528, 859067817713438540813133744, 95973644392465888508242272804, 11312379843382901418721437545706
Offset: 0

Views

Author

Paul D. Hanna, May 08 2018

Keywords

Examples

			G.f.: A(x) = 1 + 4*x^3 + 90*x^4 + 2448*x^5 + 79716*x^6 + 3058740*x^7 + 135637242*x^8 + 6835557984*x^9 + 386119895256*x^10 + 24170805494868*x^11 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (1+x)^((n-1)^2) / A(x) begins:
n=0: [1, 1, 0, -4, -94, -2538, -82148, -3137720, ...];
n=1: [1, 0, 0, -4, -90, -2448, -79700, -3058020, ...];
n=2: [1, 1, 0, -4, -94, -2538, -82148, -3137720, ...];
n=3: [1, 4, 6, 0, -105, -2832, -90048, -3391872, ...];
n=4: [1, 9, 36, 80, 0, -3276, -105224, -3871476, ...];
n=5: [1, 16, 120, 556, 1666, 0, -123900, -4673220, ...];
n=6: [1, 25, 300, 2296, 12460, 47232, 0, -5561820, ...];
n=7: [1, 36, 630, 7136, 58671, 368784, 1694704, 0,  ...];
n=8: [1, 49, 1176, 18420, 211590, 1895322, 13604628, 73552752, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1+x)^((n-1)^2) / A(x) = 0 for n>0.
RELATED SEQUENCES.
The secondary diagonal in the above table that begins
[1, 1, 6, 80, 1666, 47232, 1694704, 73552752, ...]
yields A132616, column 0 of triangle A132615.
Related triangular matrix T = A132615 begins:
1;
1, 1;
1, 1, 1;
6, 3, 1, 1;
80, 25, 5, 1, 1;
1666, 378, 56, 7, 1, 1;
47232, 8460, 1020, 99, 9, 1, 1;
1694704, 252087, 26015, 2134, 154, 11, 1, 1;
73552752, 9392890, 855478, 61919, 3848, 221, 13, 1, 1; ...
in which row n equals row (n-1) of T^(2*n-1) followed by '1' for n > 0.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( (1+x +x*O(x^m))^((m-2)^2)/Ser(A) )[m] ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

Formula

A132616(n+1) = [x^n] (1+x)^(n^2) / A(x) for n>=0.

A304398 G.f. A(x) satisfies: [x^n] (1+x)^((n+1)^3) / A(x) = 0 for n>0.

Original entry on oeis.org

1, 8, 199, 19568, 4309702, 1628514128, 927231430126, 737350581437744, 778840734924755140, 1054020790695331268000, 1778132840285207445942196, 3659007006256230147804241040, 9023119928096184018484024831288, 26274442260784898029809836586675872, 89218495222818281880277619804533375624, 349496587851612327547463367678217875791792
Offset: 0

Views

Author

Paul D. Hanna, May 14 2018

Keywords

Examples

			G.f.: A(x) = 1 + 8*x + 199*x^2 + 19568*x^3 + 4309702*x^4 + 1628514128*x^5 + 927231430126*x^6 + 737350581437744*x^7 + 778840734924755140*x^8 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (1+x)^((n+1)^3)/A(x) begins:
n=0: [1, -7, -143, -17031, -4008021, -1560094653, -901603927833, ...;
n=1: [1, 0, -171, -18144, -4130451, -1588513680, -912609360075, ...;
n=2: [1, 19, 0, -20424, -4500552, -1670248944, -943515644316, ...;
n=3: [1, 56, 1369, 0, -5042565, -1848681000, -1008460310529, ...;
n=4: [1, 117, 6615, 221979, 0, -2071834128, -1129354648380, ...;
n=5: [1, 208, 21357, 1424544, 64174929, 0, -1267137137679, ...;
n=6: [1, 335, 55774, 6134466, 495645999, 29071716177, 0, ...; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1+x)^((n+1)^3)/A(x) = 0 for n>0.
RELATED SERIES.
1 - 1/A(x) = 8*x + 135*x^2 + 16896*x^3 + 3991125*x^4 + 1556103528*x^5 + 900047824305*x^6 + 722051918333952*x^7 + 766786063398540525*x^8 + ...
The logarithmic derivative of the g.f. A(x) begins
A'(x)/A(x) = 8 + 334*x + 54440*x^2 + 16580278*x^3 + 7958081528*x^4 + 5480891617798*x^5 + 5107502440681208*x^6 + 6182250826385760238*x^7 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( (1+x +x*O(x^m))^(m^3)/Ser(A) )[m] ); A[n+1]}
    for(n=0, 20, print1(a(n), ", "))

A304399 G.f. A(x) satisfies: [x^n] (1+x)^((n+1)^4) / A(x) = 0 for n>0.

Original entry on oeis.org

1, 16, 2200, 1809920, 4241345876, 20919209023760, 185887334702902784, 2699985099706935115520, 59877289873410663776378876, 1926339929784486079047963326480, 86370374435881318779333300624751016, 5225229347181019896500110654738959018752, 415299644168495653846091996394573044842672676
Offset: 0

Views

Author

Paul D. Hanna, May 14 2018

Keywords

Examples

			G.f.: A(x) = 1 + 16*x + 2200*x^2 + 1809920*x^3 + 4241345876*x^4 + 20919209023760*x^5 + 185887334702902784*x^6 + 2699985099706935115520*x^7 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in (1+x)^((n+1)^4)/A(x) begins:
n=0: [1, -15, -1960, -1745560, -4181956116, -20781289862564, ...;
n=1: [1, 0, -2080, -1776080, -4208350776, -20844203397376, ...;
n=2: [1, 65, 0, -1867600, -4327445336, -21121523038728, ...;
n=3: [1, 240, 26600, 0, -4559454036, -21903515092368, ...;
n=4: [1, 609, 183056, 34416384, 0, -23127137438064, ...;
n=5: [1, 1280, 816480, 344268080, 103140231304, 0, ...;
n=6: [1, 2385, 2840840, 2251489240, 1330416079284, 599753730572516, 0, ...; ...
in which the main diagonal is all zeros after the initial term, illustrating that [x^n] (1+x)^((n+1)^4)/A(x) = 0 for n>0.
RELATED SERIES.
1 - 1/A(x) = 16*x + 1944*x^2 + 1743616*x^3 + 4180212500*x^4 + 20777109650064*x^5 + 185199596154767936*x^6 + 2693946371100901126144*x^7 + ...
The logarithmic derivative of the g.f. A(x) begins
A'(x)/A(x) = 16 + 4144*x + 5328256*x^2 + 16842055888*x^3 + 104239488218896*x^4 + 1113257196684170944*x^5 + 18878740287619671915136*x^6 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = Vec( (1+x +x*O(x^m))^(m^4)/Ser(A) )[m] ); A[n+1]}
    for(n=0, 20, print1(a(n), ", "))
Showing 1-7 of 7 results.