cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304194 Numbers k such that k = Product (p_j^e_j) = Product (pi(p_j)*p_j), where pi() = A000720.

Original entry on oeis.org

1, 2, 12, 56, 180, 304, 336, 936, 1696, 1824, 2484, 5040, 5328, 6664, 8384, 8512, 9900, 10176, 13176, 14040, 25632, 26208, 27360, 33372, 33712, 37260, 39808, 39984, 47488, 50304, 51072, 52200, 65232, 69552, 79920, 126900, 128448, 142272, 149184, 152640, 162648, 167776, 184064, 193752, 197640
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2018

Keywords

Comments

Numbers k such that A007947(k)*A156061(k) = k or A156061(k) = A003557(k).

Examples

			9900 is a term because 9900 = 2^2 * 3^2 * 5^2 * 11 = prime(1)^2 * prime(2)^2 * prime(3)^2 * prime(5) = 1*prime(1) * 2*prime(2) * 3*prime(3) * 5*prime(5).
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ (PrimePi[#[[1]]] #[[1]] & /@ FactorInteger[n]); a[1] = 1; Select[Range[200000], a[#] == # &]
  • PARI
    isok(n) = {my(f=factor(n)); prod(k=1, #f~, primepi(f[k,1])*f[k,1]) == n;} \\ Michel Marcus, May 08 2018