cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304201 a(n) is the number of cyclic permutations of length n that admit a [1,-1,-1]-gridding.

Original entry on oeis.org

1, 1, 1, 2, 5, 15, 43, 120, 338, 952, 2672, 7494, 21035, 59115, 166433, 469560, 1327802, 3763545, 10692500, 30447858, 86894361, 248506757, 712109663, 2044402512, 5879579540, 16937048040, 48864612668, 141179970820, 408444645375, 1183143522435, 3431241484223, 9961919944284
Offset: 0

Views

Author

Kassie Archer, May 08 2018

Keywords

Comments

a(n) is the number of permutations of length n that are composed of an increasing segment, followed by a decreasing segment, followed by another decreasing segment. In other words, these permutation have a descent set of the form {i, i+1, ..., n-1} for some i or {i, i+1, ..., n-1}\{j} for some i and j > i.

Crossrefs

Programs

  • PARI
    t051168(n, k) = if (n==0, 1, (1/n) * sumdiv(gcd(n, k), d, moebius(d) * binomial(n/d, k/d)));
    T303979(n, k) = my(t=sum(j=1, k-1, (-1)^(k+j+1)*t051168(n, j))); if (!(n % 2), t += (-1)^(k+1)*sum(j=1, k-1, if (((n-j) % 4) == 2, t051168(n/2, j/2)))); t;
    a027376(n) = if(n<1, n==0, sumdiv(n, d, moebius(n/d)*3^d)/n);
    a133267(n) = sumdiv(n, d, moebius(d)*3^(n/d)/n - if (d%2, moebius(d)*(3^(n/d)-1)/(2*n)));
    a006575(n) = sumdiv(n, d, if ( bitand(d, 1), moebius(d) * (3^(n/d)-1) , 0 ) ) / (2*n);
    a(n) = if (n <= 2, 1, res = a027376(n)/2 - sum(i=2, n-1, (n+1-i)*T303979(n,i)); if (!(n%2), if ((n%4)==2, res += a133267(n/2)/2, res += a006575(n/2)/2)); res); \\ Michel Marcus, May 18 2018

Formula

a(n) = A027376(n)/2 - Sum_{i=2..n-1} (n+1-i)*A303979(n,i), when n is odd and n > 2;
a(n) = (A027376(n) + A133267(n/2))/2 - Sum_{i=2..n-1} (n+1-i)*A303979(n,i), when n = 2 (mod 4) and n > 2.
a(n) = (A027376(n) + A006575(n/2))/2 - Sum_{i=2..n-1} (n+1-i)*A303979(n,i), when n = 0 (mod 4) and n > 2.

Extensions

More terms from Michel Marcus, May 19 2018