A304233 If n = Product (p_j^k_j) then a(n) = min{p_j^k_j}*max{p_j^k_j}.
1, 4, 9, 16, 25, 6, 49, 64, 81, 10, 121, 12, 169, 14, 15, 256, 289, 18, 361, 20, 21, 22, 529, 24, 625, 26, 729, 28, 841, 10, 961, 1024, 33, 34, 35, 36, 1369, 38, 39, 40, 1681, 14, 1849, 44, 45, 46, 2209, 48, 2401, 50, 51, 52, 2809, 54, 55, 56, 57, 58, 3481, 15, 3721, 62, 63, 4096, 65
Offset: 1
Keywords
Examples
a(60) = 15 because 60 = 2^2*3*5, min{2^2,3,5} = 3, max{2^2,3,5} = 5 and 3*5 = 15.
Links
- Ilya Gutkovskiy, Logarithmic scatter plot of a(n) up to n=30000
- Eric Weisstein's World of Mathematics, Prime Factorization
Crossrefs
Programs
-
Mathematica
a[n_] := Min[#[[1]]^#[[2]] & /@FactorInteger[n]] Max[#[[1]]^#[[2]] & /@FactorInteger[n]]; Table[a[n], {n, 65}]