A304252 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1,k) + 6*T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
1, 1, 1, 6, 1, 12, 1, 18, 36, 1, 24, 108, 1, 30, 216, 216, 1, 36, 360, 864, 1, 42, 540, 2160, 1296, 1, 48, 756, 4320, 6480, 1, 54, 1008, 7560, 19440, 7776, 1, 60, 1296, 12096, 45360, 46656, 1, 66, 1620, 18144, 90720, 163296, 46656, 1, 72, 1980, 25920, 163296, 435456, 326592, 1, 78, 2376, 35640
Offset: 0
Examples
Triangle begins: 1; 1; 1, 6; 1, 12; 1, 18, 36; 1, 24, 108; 1, 30, 216, 216; 1, 36, 360, 864; 1, 42, 540, 2160, 1296; 1, 48, 756, 4320, 6480; 1, 54, 1008, 7560, 19440, 7776; 1, 60, 1296, 12096, 45360, 46656; 1, 66, 1620, 18144, 90720, 163296, 46656; 1, 72, 1980, 25920, 163296, 435456, 326592; 1, 78, 2376, 35640, 272160, 979776, 1306368, 279936; 1, 84, 2808, 47520, 427680, 1959552, 3919104, 2239488;
References
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72.
Links
- Zagros Lalo, Left-justified triangle
- Zagros Lalo, Skew diagonals in center-justified triangle of coefficients in expansion of (1+6x)^n
Programs
-
Mathematica
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, t[n - 1, k] + 6 t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten (* Robert G. Wilson v, May 19 2018 *) Table[6^k Binomial[n - k, k], {n, 0, 13}, {k, 0, Floor[n/2]}] // Flatten
-
PARI
T(n,k) = if ((n<0) || (k<0), 0, if ((n==0) && (k==0), 1, T(n-1,k) + 6*T(n-2,k-1))); tabf(nn) = for (n=0, nn, for (k=0, n\2, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 10 2018
Formula
T(n,k) = 6^k*binomial(n-k,k), n >= 0, 0 <= k <= floor(n/2).
Comments