cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304329 Expansion of Product_{k>0} (Sum_{m>=0} x^(k*m^3)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 7, 8, 11, 13, 16, 20, 24, 30, 36, 44, 51, 62, 74, 88, 103, 122, 145, 169, 197, 231, 268, 312, 362, 419, 485, 557, 642, 737, 846, 967, 1108, 1262, 1442, 1640, 1865, 2118, 2398, 2719, 3074, 3474, 3922, 4421, 4980, 5604, 6294, 7070, 7929
Offset: 0

Views

Author

Seiichi Manyama, May 11 2018

Keywords

Comments

Also the number of partitions of n in which each part occurs a cube number (>=0) of times.

Examples

			n | Partitions of n in which each part occurs a cube number (>=0) of times
--+-----------------------------------------------------------------------
1 | 1;
2 | 2;
3 | 3 = 2+1;
4 | 4 = 3+1;
5 | 5 = 4+1 = 3+2;
6 | 6 = 5+1 = 4+2 = 3+2+1;
7 | 7 = 6+1 = 5+2 = 4+3 = 4+2+1;
8 | 8 = 7+1 = 6+2 = 5+3 = 5+2+1 = 4+3+1 = 1+1+1+1+1+1+1+1;
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local j; if n=0 then 1
          elif i<1 then 0 else b(n, i-1); for j while
            i*j^3<=n do %+b(n-i*j^3, i-1) od; % fi
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..60);  # Alois P. Heinz, May 11 2018
  • Mathematica
    terms = 100;
    Product[Sum[x^(k*m^3), {m, 0, Ceiling[terms^(1/3)]}], {k, 1, terms}] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, Mar 08 2021 *)