cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304330 T(n, k) = Sum_{j=0..k} (-1)^j*binomial(2*k, j)*(k - j)^(2*n), triangle read by rows, n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 12, 0, 1, 60, 360, 0, 1, 252, 5040, 20160, 0, 1, 1020, 52920, 604800, 1814400, 0, 1, 4092, 506880, 12640320, 99792000, 239500800, 0, 1, 16380, 4684680, 230630400, 3632428800, 21794572800, 43589145600, 0, 1, 65532, 42653520, 3952428480, 111567456000, 1264085222400, 6102480384000, 10461394944000
Offset: 0

Views

Author

Peter Luschny, May 11 2018

Keywords

Examples

			Triangle starts:
  [0] 1;
  [1] 0, 1;
  [2] 0, 1,    12;
  [3] 0, 1,    60,     360;
  [4] 0, 1,   252,    5040,     20160;
  [5] 0, 1,  1020,   52920,    604800,    1814400;
  [6] 0, 1,  4092,  506880,  12640320,   99792000,   239500800;
  [7] 0, 1, 16380, 4684680, 230630400, 3632428800, 21794572800, 43589145600;
		

Crossrefs

Row sums are A100872, T(n,2) = A058896, T(n,n) = A002674, T(n,n-1)= A091032.

Programs

  • Maple
    T := (n, k) -> add((-1)^j*binomial(2*k,j)*(k-j)^(2*n), j=0..k):
    for n from 0 to 8 do seq(T(n, k), k=0..n) od;
  • PARI
    T(n, k) = sum(j=0, k, (-1)^j*binomial(2*k, j)*(k - j)^(2*n)); \\ Michel Marcus, Aug 03 2025