A036969
Triangle read by rows: T(n,k) = T(n-1,k-1) + k^2*T(n-1,k), 1 < k <= n, T(n,1) = 1.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 21, 14, 1, 1, 85, 147, 30, 1, 1, 341, 1408, 627, 55, 1, 1, 1365, 13013, 11440, 2002, 91, 1, 1, 5461, 118482, 196053, 61490, 5278, 140, 1, 1, 21845, 1071799, 3255330, 1733303, 251498, 12138, 204, 1, 1, 87381, 9668036, 53157079, 46587905
Offset: 1
Triangle begins:
1;
1, 1;
1, 5, 1;
1, 21, 14, 1;
1, 85, 147, 30, 1;
1, 341, 1408, 627, 55, 1;
1, 1365, 13013, 11440, 2002, 91, 1;
1, 5461, 118482, 196053, 61490, 5278, 140, 1;
...
T(3,2) = 5: The five set partitions into two sets are {1,1',2,2'}{3,3'}, {1,1',3,3'}{2,2'}, {1,1'}{2,2',3,3'}, {1,1',3}{2,2',3'} and {1,1',3'}{2,2',3}.
- L. Carlitz, A conjecture concerning Genocchi numbers. Norske Vid. Selsk. Skr. (Trondheim) 1971, no. 9, 4 pp. [The triangle appears on page 2.]
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.8.
- Vincenzo Librandi, Rows n = 1..100 of triangle, flattened
- Thomas Browning, Counting Parabolic Double Cosets in Symmetric Groups, arXiv:2010.13256 [math.CO], 2020.
- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt. Central factorial numbers; their main properties and some applications, Num. Funct. Anal. Optim., 10 (1989) 419-488.
- José L. Cereceda, Sums of powers of integers and the sequence A304330, arXiv:2405.05268 [math.GM], 2024. See p. 2.
- M. W. Coffey and M. C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
- Qi Fang, Ya-Nan Feng, and Shi-Mei Ma, Alternating runs of permutations and the central factorial numbers, arXiv:2202.13978 [math.CO], 2022.
- F. G. Garvan, Higher-order spt functions, Adv. Math. 228 (2011), no. 1, 241-265. - From _N. J. A. Sloane_, Jan 02 2013
- Petro Kolosov, Polynomial identities involving central factorial numbers, GitHub, 2024. See p. 6.
- P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., (2) 19 (1919), 75-113; Coll. Papers II, pp. 303-341.
- S. Matsumoto and J. Novak, Jucys-Murphy Elements and Unitary Matrix Integrals arXiv.0905.1992 [math.CO], 2009-2012.
- B. K. Miceli, Two q-Analogues of Poly-Stirling Numbers, J. Integer Seq., 14 (2011), 11.9.6.
- John Riordan, Letter, Apr 28 1976.
- John Riordan, Letter, Jul 06 1978
- Richard P. Stanley, Hook Lengths and Contents.
-
a036969 n k = a036969_tabl !! (n-1) (k-1)
a036969_row n = a036969_tabl !! (n-1)
a036969_tabl = iterate f [1] where
f row = zipWith (+)
([0] ++ row) (zipWith (*) (tail a000290_list) (row ++ [0]))
-- Reinhard Zumkeller, Feb 18 2013
-
A036969 := proc(n,k) local j; 2*add(j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!),j=1..k); end;
-
t[n_, k_] := 2*Sum[j^(2*n)*(-1)^(k-j)/((k-j)!*(k+j)!), {j, 1, k}]; Flatten[ Table[t[n, k], {n, 1, 10}, {k, 1, n}]] (* Jean-François Alcover, Oct 11 2011 *)
t1[n_, k_] := (1/(2 k)!) * Sum[Binomial[2 k, j]*(-1)^j*(k - j)^(2 n), {j, 0, 2 k}]; Column[Table[t1[n, k], {n, 1, 10}, {k, 1, n}]] (* Kolosov Petro ,Jul 26 2023 *)
-
T(n,k)=if(1M. F. Hasler, Feb 03 2012
-
T(n,k)=2*sum(j=1,k,(-1)^(k-j)*j^(2*n)/(k-j)!/(k+j)!) \\ M. F. Hasler, Feb 03 2012
-
def A036969(n,k) : return (2/factorial(2*k))*add((-1)^j*binomial(2*k,j)*(k-j)^(2*n) for j in (0..k))
for n in (1..7) : print([A036969(n,k) for k in (1..n)]) # Peter Luschny, Feb 03 2012
A129467
Orthogonal polynomials with all zeros integers from 2*A000217.
Original entry on oeis.org
1, 0, 1, 0, -2, 1, 0, 12, -8, 1, 0, -144, 108, -20, 1, 0, 2880, -2304, 508, -40, 1, 0, -86400, 72000, -17544, 1708, -70, 1, 0, 3628800, -3110400, 808848, -89280, 4648, -112, 1, 0, -203212800, 177811200, -48405888, 5808528, -349568, 10920, -168, 1, 0, 14631321600, -13005619200, 3663035136, -466619904, 30977424, -1135808, 23016, -240, 1
Offset: 0
Triangle starts:
1;
0, 1;
0, -2, 1;
0, 12, -8, 1;
0, -144, 108, -20, 1;
0, 2880, -2304, 508, -40, 1;
...
n=3: [0,12,-8,1]. p(3,x) = x*(12-8*x+x^2) = x*(x-2)*(x-6).
n=5: [0,2880,-2304,508,-40,1]. p(5,x) = x*(2880-2304*x+508*x^2-40*x^3 +x^4) = x*(x-2)*(x-6)*(x-12)*(x-20).
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- G. E. Andrews, W. Gawronski, and L. L. Littlejohn, The Legendre-Stirling Numbers, Discrete Mathematics, Volume 311, Issue 14, 28 July 2011, Pages 1255-1272.
- M. Bruschi, F. Calogero and R. Droghei, Proof of certain Diophantine conjectures and identification of remarkable classes of orthogonal polynomials, J. Physics A, 40(2007), pp. 3815-3829.
- José L. Cereceda, A refinement of Lang's formula for the sum of powers of integers, arXiv:2301.02141 [math.NT], 2023.
- José L. Cereceda, Sums of powers of integers and the sequence A304330, arXiv:2405.05268 [math.GM], 2024. See p. 14.
- Mark W. Coffey and Matthew C. Lettington, On Fibonacci Polynomial Expressions for Sums of mth Powers, their implications for Faulhaber's Formula and some Theorems of Fermat, arXiv:1510.05402 [math.NT], 2015.
- Wolfdieter Lang, First ten rows and more.
-
f:= func< n,k | (&+[Binomial(2*k+j,j)*StirlingFirst(2*n,2*k+j)*n^j: j in [0..2*(n-k)]]) >;
function T(n,k) // T = A129467
if k eq n then return 1;
else return f(n,k) - (&+[Binomial(j,2*(j-k))*T(n,j): j in [k+1..n]]);
end if;
end function;
[[T(n,k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Feb 09 2024
-
T[n_, k_, m_]:= T[n,k,m]= If[k<0 || k>n, 0, If[n==0, 1, (2*(n-1)*(n-m) -(m-1))*T[n-1,k,m] -((n-1)*(n-m-1))^2*T[n-2,k,m] +T[n-1,k-1,m]]]; (* T=A129467 *)
Table[T[n,k,n], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 09 2024 *)
-
@CachedFunction
def f(n,k): return sum(binomial(2*k+j,j)*(-1)^j*stirling_number1(2*n,2*k+j)*n^j for j in range(2*n-2*k+1))
def T(n,k): # T = A129467
if n==0: return 1
else: return - sum(binomial(j,2*j-2*k)*T(n,j) for j in range(k+1,n+1)) + f(n,k)
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 09 2024
A304334
T(n, k) = Sum_{j=0..k} (-1)^j*binomial(2*k, j)*(k - j)^(2*n)/k!, triangle read by rows, n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 6, 0, 1, 30, 60, 0, 1, 126, 840, 840, 0, 1, 510, 8820, 25200, 15120, 0, 1, 2046, 84480, 526680, 831600, 332640, 0, 1, 8190, 780780, 9609600, 30270240, 30270240, 8648640, 0, 1, 32766, 7108920, 164684520, 929728800, 1755673920, 1210809600, 259459200
Offset: 0
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 1, 6
[3] 0, 1, 30, 60
[4] 0, 1, 126, 840, 840
[5] 0, 1, 510, 8820, 25200, 15120
[6] 0, 1, 2046, 84480, 526680, 831600, 332640
[7] 0, 1, 8190, 780780, 9609600, 30270240, 30270240, 8648640
[8] 0, 1, 32766, 7108920, 164684520, 929728800, 1755673920, 1210809600, 259459200
-
A304334 := (n, k) -> add((-1)^j*binomial(2*k,j)*(k-j)^(2*n), j=0..k)/k!:
for n from 0 to 8 do seq(A304334(n, k), k=0..n) od;
-
T(n, k) = sum(j=0, k, (-1)^j*binomial(2*k, j)*(k - j)^(2*n))/k!;
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 11 2018
A304336
T(n, k) = Sum_{j=0..k} (-1)^j*binomial(2*k, j)*(k - j)^(2*n)/(k!)^2, triangle read by rows, n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 3, 0, 1, 15, 10, 0, 1, 63, 140, 35, 0, 1, 255, 1470, 1050, 126, 0, 1, 1023, 14080, 21945, 6930, 462, 0, 1, 4095, 130130, 400400, 252252, 42042, 1716, 0, 1, 16383, 1184820, 6861855, 7747740, 2438436, 240240, 6435
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 3;
[3] 0, 1, 15, 10;
[4] 0, 1, 63, 140, 35;
[5] 0, 1, 255, 1470, 1050, 126;
[6] 0, 1, 1023, 14080, 21945, 6930, 462;
[7] 0, 1, 4095, 130130, 400400, 252252, 42042, 1716;
[8] 0, 1, 16383, 1184820, 6861855, 7747740, 2438436, 240240, 6435;
-
A304336 := (n, k) -> add((-1)^j*binomial(2*k,j)*(k-j)^(2*n), j=0..k)/(k!)^2:
for n from 0 to 8 do seq(A304336(n, k), k=0..n) od;
-
T(n, k) = sum(j=0, k, (-1)^j*binomial(2*k, j)*(k - j)^(2*n))/(k!)^2;
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 11 2018
A204579
Triangle read by rows: matrix inverse of the central factorial numbers T(2*n, 2*k) (A036969).
Original entry on oeis.org
1, -1, 1, 4, -5, 1, -36, 49, -14, 1, 576, -820, 273, -30, 1, -14400, 21076, -7645, 1023, -55, 1, 518400, -773136, 296296, -44473, 3003, -91, 1, -25401600, 38402064, -15291640, 2475473, -191620, 7462, -140, 1, 1625702400, -2483133696, 1017067024, -173721912, 14739153, -669188, 16422, -204, 1
Offset: 1
Triangle starts:
[1] 1;
[2] -1, 1;
[3] 4, -5, 1;
[4] -36, 49, -14, 1;
[5] 576, -820, 273, -30, 1;
[6] -14400, 21076, -7645, 1023, -55, 1;
[7] 518400, -773136, 296296, -44473, 3003, -91, 1;
[8] -25401600, 38402064, -15291640, 2475473, -191620, 7462, -140, 1;
-
# From Peter Luschny, Feb 29 2024: (Start)
ogf := n -> local j; z^2*mul(z^2 - j^2, j = 1..n-1):
Trow := n -> local k; seq(coeff(expand(ogf(n)), z, 2*k), k = 1..n):
# Alternative:
f := w -> (w^sqrt(t) + w^(-sqrt(t)))/2: egf := f((x/2 + sqrt(1 + (x/2)^2))^2):
ser := series(egf, x, 20): cx := n -> coeff(ser, x, 2*n):
Trow := n -> local k; seq((2*n)!*coeff(cx(n), t, k), k = 1..n): # (End)
# Assuming offset 0:
rowpoly := n -> (-1)^n * pochhammer(1 - sqrt(x), n) * pochhammer(1 + sqrt(x), n):
row := n -> local k; seq(coeff(expand(rowpoly(n)), x, k), k = 0..n):
seq(print(row(n)), n = 0..7); # Peter Luschny, Aug 03 2024
-
rows = 10;
t[n_, k_] := 2*Sum[j^(2*n)*(-1)^(k - j)/((k - j)!*(k + j)!), {j, 1, k}];
T = Table[t[n, k], {n, 1, rows}, {k, 1, rows}] // Inverse;
Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 14 2018 *)
-
select(concat(Vec(matrix(10,10,n,k,T(n,k)/*from A036969*/)~^-1)), x->x)
-
def A204579(n, k): return (-1)^(n-k)*A008955(n, n-k)
for n in (0..7): print([A204579(n, k) for k in (0..n)]) # Peter Luschny, Feb 05 2012
A303675
Triangle read by rows: coefficients in the sum of odd powers as expressed by Faulhaber's theorem, T(n, k) for n >= 1, 1 <= k <= n.
Original entry on oeis.org
1, 6, 1, 120, 30, 1, 5040, 1680, 126, 1, 362880, 151200, 17640, 510, 1, 39916800, 19958400, 3160080, 168960, 2046, 1, 6227020800, 3632428800, 726485760, 57657600, 1561560, 8190, 1, 1307674368000, 871782912000, 210680870400, 22313491200, 988107120, 14217840, 32766, 1
Offset: 1
The triangle begins (see the Knuth reference p. 10):
1;
6, 1;
120, 30, 1;
5040, 1680, 126, 1;
362880, 151200, 17640, 510, 1;
39916800, 19958400, 3160080, 168960, 2046, 1;
6227020800, 3632428800, 726485760, 57657600, 1561560, 8190, 1;
.
Let S(n, m) = Sum_{j=1..n} j^m. Faulhaber's formula gives for m = 7 (m odd!):
F(n, 7) = 5040*C(n+4, 8) + 1680*C(n+3, 6) + 126*C(n+2, 4) + C(n+1, 2).
Faulhaber's theorem asserts that for all n >= 1 S(n, 7) = F(n, 7).
If n = 43 the common value is 1600620805036.
- John H. Conway and Richard Guy, The Book of Numbers, Springer (1996), p. 107.
First column is a bisection of
A000142, second column is a bisection of
A001720.
-
T := proc(n,k) local m; m := n-k;
2*(2*m+1)!*add((-1)^(j+m)*(j+1)^(2*n)/((j+m+2)!*(m-j)!), j=0..m) end:
seq(seq(T(n, k), k=1..n), n=1..8); # Peter Luschny, May 09 2018
-
(* After Peter Luschny's above formula. *)
T[n_, k_] := (1/(n-k+1))*Sum[(-1)^j*Binomial[2*(n-k+1), j]*((n-k+1) - j)^(2*n), {j, 0, n-k+1}]; Column[Table[T[n, k], {n, 1, 10}, {k, 1, n}], Center]
-
def A303675(n, k): return factorial(2*(n-k)+1)*A008957(n, k)
for n in (1..7): print([A303675(n, k) for k in (1..n)]) # Peter Luschny, May 10 2018
Original entry on oeis.org
1, 1, 4, 26, 239, 2902, 44441, 830636, 18495910, 481474188, 14432543299, 492063896964, 18885525411110, 808850019798316, 38368738864146619, 2002743853356179552, 114374154959904537521, 7110312727864509410026, 479017371580348640009295
Offset: 0
-
A304338 := n -> add(add((-1)^j*binomial(2*k,j)*(k-j)^(2*n), j=0..k)/(k!)^2, k=0..n): seq(A304338(n), n=0..18);
-
a(n) = sum(k=0, n, sum(j=0, k, (-1)^j*binomial(2*k,j)*(k-j)^(2*n)) / (k!)^2); \\ Michel Marcus, May 11 2018
A385567
Triangle read by rows: T(n,k) is the numerator of A(n,k), such that A(n,k) satisfies the identity for sums of odd powers: Sum_{k=1..p} k^(2n-1) = 1/(2*n) * Sum_{k=0..n-1} A(n,k) * (p^2+p)^(n-k), for all integers p >= 1.
Original entry on oeis.org
1, 1, 1, 1, 0, -1, 1, -1, 0, 1, 1, -4, 2, 0, -1, 1, -5, 3, -3, 0, 5, 1, -4, 17, -10, 5, 0, -691, 1, -35, 287, -118, 691, -691, 0, 7, 1, -8, 112, -352, 718, -280, 140, 0, -3617, 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 43867, 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, -174611
Offset: 0
Triangle begins:
---------------------------------------------------------------------------------
k = 0 1 2 3 4 5 6 7 8 9 10
---------------------------------------------------------------------------------
n=0: 1;
n=1: 1, 1;
n=2: 1, 0, -1;
n=3: 1, -1, 0, 1;
n=4: 1, -4, 2, 0, -1;
n=5: 1, -5, 3, -3, 0, 5;
n=6: 1, -4, 17, -10, 5, 0, -691;
n=7: 1, -35, 287, -118, 691, -691, 0, 7;
n=8: 1, -8, 112, -352, 718, -280, 140, 0, -3617;
n=9: 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 43867;
n=10: 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, -174611;
...
- Donald E. Knuth, Johann Faulhaber and Sums of Powers, arXiv:9207222 [math.CA], 1992, see page 16.
- Petro Kolosov, Faulhaber's coefficients: Examples, GitHub, 2025.
- Petro Kolosov, Mathematica programs, GitHub, 2025.
-
FaulhaberCoefficient[n_, k_] := 0;
FaulhaberCoefficient[n_, k_] := (-1)^(n - k) * Sum[Binomial[2 n, n - k - j]* Binomial[n - k + j, j] * (n - k - j)/(n - k + j) * BernoulliB[n + k + j], {j, 0, n - k}] /; 0 <= k < n;
FaulhaberCoefficient[n_, k_] := BernoulliB[2 n] /; k == n;
Flatten[Table[Numerator[FaulhaberCoefficient[n, k]], {n, 0, 10}, {k, 0, n}]]
-
T(n,k) = numerator(if (k==n, bernfrac(2*n), if (kMichel Marcus, Aug 03 2025
A386728
Triangle read by rows: T(n,k) is the denominator of A(n,k), such that A(n,k) satisfies the identity for sums of odd powers: Sum_{k=1..p} k^(2n-1) = 1/(2*n) * Sum_{k=0..n-1} A(n,k) * (p^2+p)^(n-k), for all integers p >= 1.
Original entry on oeis.org
1, 1, 6, 1, 1, 30, 1, 2, 1, 42, 1, 3, 3, 1, 30, 1, 2, 1, 2, 1, 66, 1, 1, 2, 1, 1, 1, 2730, 1, 6, 15, 3, 15, 30, 1, 6, 1, 1, 3, 3, 3, 1, 1, 1, 510, 1, 2, 1, 1, 5, 2, 5, 10, 1, 798, 1, 3, 2, 7, 1, 3, 42, 21, 21, 1, 330, 1, 2, 3, 2, 1, 6, 15, 3, 5, 10, 1, 138, 1
Offset: 0
Triangle begins:
---------------------------------------------------------
k = 0 1 2 3 4 5 6 7 8 9 10
---------------------------------------------------------
n=0: 1;
n=1: 1, 6;
n=2: 1, 1, 30;
n=3: 1, 2, 1, 42;
n=4: 1, 3, 3, 1, 30;
n=5: 1, 2, 1, 2, 1, 66;
n=6: 1, 1, 2, 1, 1, 1, 2730;
n=7: 1, 6, 15, 3, 15, 30, 1, 6;
n=8: 1, 1, 3, 3, 3, 1, 1, 1, 510;
n=9: 1, 2, 1, 1, 5, 2, 5, 10, 1, 798;
n=10: 1, 3, 2, 7, 1, 3, 42, 21, 21, 1, 330;
...
- Donald E. Knuth, Johann Faulhaber and Sums of Powers, arXiv:9207222 [math.CA], 1992, see page 16.
- Petro Kolosov, Faulhaber's coefficients: Examples, GitHub, 2025.
- Petro Kolosov, Mathematica programs, GitHub, 2025.
-
FaulhaberCoefficient[n_, k_] := 0;
FaulhaberCoefficient[n_, k_] := (-1)^(n - k) * Sum[Binomial[2 n, n - k - j]* Binomial[n - k + j, j] * (n - k - j)/(n - k + j) * BernoulliB[n + k + j], {j, 0, n - k}] /; 0 <= k < n;
FaulhaberCoefficient[n_, k_] := BernoulliB[2 n] /; k == n;
Flatten[Table[Denominator[FaulhaberCoefficient[n, k]], {n, 0, 10}, {k, 0, n}]]
-
T(n,k) = denominator(if (k==n, bernfrac(2*n), if (kMichel Marcus, Aug 03 2025
Showing 1-9 of 9 results.
Comments