Original entry on oeis.org
1, 1, 4, 26, 239, 2902, 44441, 830636, 18495910, 481474188, 14432543299, 492063896964, 18885525411110, 808850019798316, 38368738864146619, 2002743853356179552, 114374154959904537521, 7110312727864509410026, 479017371580348640009295
Offset: 0
-
A304338 := n -> add(add((-1)^j*binomial(2*k,j)*(k-j)^(2*n), j=0..k)/(k!)^2, k=0..n): seq(A304338(n), n=0..18);
-
a(n) = sum(k=0, n, sum(j=0, k, (-1)^j*binomial(2*k,j)*(k-j)^(2*n)) / (k!)^2); \\ Michel Marcus, May 11 2018
A304330
T(n, k) = Sum_{j=0..k} (-1)^j*binomial(2*k, j)*(k - j)^(2*n), triangle read by rows, n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 12, 0, 1, 60, 360, 0, 1, 252, 5040, 20160, 0, 1, 1020, 52920, 604800, 1814400, 0, 1, 4092, 506880, 12640320, 99792000, 239500800, 0, 1, 16380, 4684680, 230630400, 3632428800, 21794572800, 43589145600, 0, 1, 65532, 42653520, 3952428480, 111567456000, 1264085222400, 6102480384000, 10461394944000
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 12;
[3] 0, 1, 60, 360;
[4] 0, 1, 252, 5040, 20160;
[5] 0, 1, 1020, 52920, 604800, 1814400;
[6] 0, 1, 4092, 506880, 12640320, 99792000, 239500800;
[7] 0, 1, 16380, 4684680, 230630400, 3632428800, 21794572800, 43589145600;
-
T := (n, k) -> add((-1)^j*binomial(2*k,j)*(k-j)^(2*n), j=0..k):
for n from 0 to 8 do seq(T(n, k), k=0..n) od;
-
T(n, k) = sum(j=0, k, (-1)^j*binomial(2*k, j)*(k - j)^(2*n)); \\ Michel Marcus, Aug 03 2025
A304334
T(n, k) = Sum_{j=0..k} (-1)^j*binomial(2*k, j)*(k - j)^(2*n)/k!, triangle read by rows, n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 6, 0, 1, 30, 60, 0, 1, 126, 840, 840, 0, 1, 510, 8820, 25200, 15120, 0, 1, 2046, 84480, 526680, 831600, 332640, 0, 1, 8190, 780780, 9609600, 30270240, 30270240, 8648640, 0, 1, 32766, 7108920, 164684520, 929728800, 1755673920, 1210809600, 259459200
Offset: 0
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, 1, 6
[3] 0, 1, 30, 60
[4] 0, 1, 126, 840, 840
[5] 0, 1, 510, 8820, 25200, 15120
[6] 0, 1, 2046, 84480, 526680, 831600, 332640
[7] 0, 1, 8190, 780780, 9609600, 30270240, 30270240, 8648640
[8] 0, 1, 32766, 7108920, 164684520, 929728800, 1755673920, 1210809600, 259459200
-
A304334 := (n, k) -> add((-1)^j*binomial(2*k,j)*(k-j)^(2*n), j=0..k)/k!:
for n from 0 to 8 do seq(A304334(n, k), k=0..n) od;
-
T(n, k) = sum(j=0, k, (-1)^j*binomial(2*k, j)*(k - j)^(2*n))/k!;
tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, May 11 2018
A303675
Triangle read by rows: coefficients in the sum of odd powers as expressed by Faulhaber's theorem, T(n, k) for n >= 1, 1 <= k <= n.
Original entry on oeis.org
1, 6, 1, 120, 30, 1, 5040, 1680, 126, 1, 362880, 151200, 17640, 510, 1, 39916800, 19958400, 3160080, 168960, 2046, 1, 6227020800, 3632428800, 726485760, 57657600, 1561560, 8190, 1, 1307674368000, 871782912000, 210680870400, 22313491200, 988107120, 14217840, 32766, 1
Offset: 1
The triangle begins (see the Knuth reference p. 10):
1;
6, 1;
120, 30, 1;
5040, 1680, 126, 1;
362880, 151200, 17640, 510, 1;
39916800, 19958400, 3160080, 168960, 2046, 1;
6227020800, 3632428800, 726485760, 57657600, 1561560, 8190, 1;
.
Let S(n, m) = Sum_{j=1..n} j^m. Faulhaber's formula gives for m = 7 (m odd!):
F(n, 7) = 5040*C(n+4, 8) + 1680*C(n+3, 6) + 126*C(n+2, 4) + C(n+1, 2).
Faulhaber's theorem asserts that for all n >= 1 S(n, 7) = F(n, 7).
If n = 43 the common value is 1600620805036.
- John H. Conway and Richard Guy, The Book of Numbers, Springer (1996), p. 107.
First column is a bisection of
A000142, second column is a bisection of
A001720.
-
T := proc(n,k) local m; m := n-k;
2*(2*m+1)!*add((-1)^(j+m)*(j+1)^(2*n)/((j+m+2)!*(m-j)!), j=0..m) end:
seq(seq(T(n, k), k=1..n), n=1..8); # Peter Luschny, May 09 2018
-
(* After Peter Luschny's above formula. *)
T[n_, k_] := (1/(n-k+1))*Sum[(-1)^j*Binomial[2*(n-k+1), j]*((n-k+1) - j)^(2*n), {j, 0, n-k+1}]; Column[Table[T[n, k], {n, 1, 10}, {k, 1, n}], Center]
-
def A303675(n, k): return factorial(2*(n-k)+1)*A008957(n, k)
for n in (1..7): print([A303675(n, k) for k in (1..n)]) # Peter Luschny, May 10 2018
A385567
Triangle read by rows: T(n,k) is the numerator of A(n,k), such that A(n,k) satisfies the identity for sums of odd powers: Sum_{k=1..p} k^(2n-1) = 1/(2*n) * Sum_{k=0..n-1} A(n,k) * (p^2+p)^(n-k), for all integers p >= 1.
Original entry on oeis.org
1, 1, 1, 1, 0, -1, 1, -1, 0, 1, 1, -4, 2, 0, -1, 1, -5, 3, -3, 0, 5, 1, -4, 17, -10, 5, 0, -691, 1, -35, 287, -118, 691, -691, 0, 7, 1, -8, 112, -352, 718, -280, 140, 0, -3617, 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 43867, 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, -174611
Offset: 0
Triangle begins:
---------------------------------------------------------------------------------
k = 0 1 2 3 4 5 6 7 8 9 10
---------------------------------------------------------------------------------
n=0: 1;
n=1: 1, 1;
n=2: 1, 0, -1;
n=3: 1, -1, 0, 1;
n=4: 1, -4, 2, 0, -1;
n=5: 1, -5, 3, -3, 0, 5;
n=6: 1, -4, 17, -10, 5, 0, -691;
n=7: 1, -35, 287, -118, 691, -691, 0, 7;
n=8: 1, -8, 112, -352, 718, -280, 140, 0, -3617;
n=9: 1, -21, 66, -293, 4557, -3711, 10851, -10851, 0, 43867;
n=10: 1, -40, 217, -4516, 2829, -26332, 750167, -438670, 219335, 0, -174611;
...
- Donald E. Knuth, Johann Faulhaber and Sums of Powers, arXiv:9207222 [math.CA], 1992, see page 16.
- Petro Kolosov, Faulhaber's coefficients: Examples, GitHub, 2025.
- Petro Kolosov, Mathematica programs, GitHub, 2025.
-
FaulhaberCoefficient[n_, k_] := 0;
FaulhaberCoefficient[n_, k_] := (-1)^(n - k) * Sum[Binomial[2 n, n - k - j]* Binomial[n - k + j, j] * (n - k - j)/(n - k + j) * BernoulliB[n + k + j], {j, 0, n - k}] /; 0 <= k < n;
FaulhaberCoefficient[n_, k_] := BernoulliB[2 n] /; k == n;
Flatten[Table[Numerator[FaulhaberCoefficient[n, k]], {n, 0, 10}, {k, 0, n}]]
-
T(n,k) = numerator(if (k==n, bernfrac(2*n), if (kMichel Marcus, Aug 03 2025
A386728
Triangle read by rows: T(n,k) is the denominator of A(n,k), such that A(n,k) satisfies the identity for sums of odd powers: Sum_{k=1..p} k^(2n-1) = 1/(2*n) * Sum_{k=0..n-1} A(n,k) * (p^2+p)^(n-k), for all integers p >= 1.
Original entry on oeis.org
1, 1, 6, 1, 1, 30, 1, 2, 1, 42, 1, 3, 3, 1, 30, 1, 2, 1, 2, 1, 66, 1, 1, 2, 1, 1, 1, 2730, 1, 6, 15, 3, 15, 30, 1, 6, 1, 1, 3, 3, 3, 1, 1, 1, 510, 1, 2, 1, 1, 5, 2, 5, 10, 1, 798, 1, 3, 2, 7, 1, 3, 42, 21, 21, 1, 330, 1, 2, 3, 2, 1, 6, 15, 3, 5, 10, 1, 138, 1
Offset: 0
Triangle begins:
---------------------------------------------------------
k = 0 1 2 3 4 5 6 7 8 9 10
---------------------------------------------------------
n=0: 1;
n=1: 1, 6;
n=2: 1, 1, 30;
n=3: 1, 2, 1, 42;
n=4: 1, 3, 3, 1, 30;
n=5: 1, 2, 1, 2, 1, 66;
n=6: 1, 1, 2, 1, 1, 1, 2730;
n=7: 1, 6, 15, 3, 15, 30, 1, 6;
n=8: 1, 1, 3, 3, 3, 1, 1, 1, 510;
n=9: 1, 2, 1, 1, 5, 2, 5, 10, 1, 798;
n=10: 1, 3, 2, 7, 1, 3, 42, 21, 21, 1, 330;
...
- Donald E. Knuth, Johann Faulhaber and Sums of Powers, arXiv:9207222 [math.CA], 1992, see page 16.
- Petro Kolosov, Faulhaber's coefficients: Examples, GitHub, 2025.
- Petro Kolosov, Mathematica programs, GitHub, 2025.
-
FaulhaberCoefficient[n_, k_] := 0;
FaulhaberCoefficient[n_, k_] := (-1)^(n - k) * Sum[Binomial[2 n, n - k - j]* Binomial[n - k + j, j] * (n - k - j)/(n - k + j) * BernoulliB[n + k + j], {j, 0, n - k}] /; 0 <= k < n;
FaulhaberCoefficient[n_, k_] := BernoulliB[2 n] /; k == n;
Flatten[Table[Denominator[FaulhaberCoefficient[n, k]], {n, 0, 10}, {k, 0, n}]]
-
T(n,k) = denominator(if (k==n, bernfrac(2*n), if (kMichel Marcus, Aug 03 2025
Showing 1-6 of 6 results.
Comments