cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304357 Antidiagonal sums of the first quadrant of array A(k,m) = F_k(m), F_k(m) being the k-th Fibonacci polynomial evaluated at m.

Original entry on oeis.org

0, 1, 1, 3, 5, 13, 32, 94, 297, 1036, 3911, 15918, 69350, 321779, 1582745, 8220349, 44925187, 257563819, 1544896976, 9671289892, 63051738167, 427254561854, 3003872526303, 21876513464296, 164790822258172, 1282198404741305, 10292007232817249, 85126350266370355
Offset: 0

Views

Author

Alois P. Heinz, May 11 2018

Keywords

Comments

Equivalently, antidiagonal sums of the third quadrant of array A(k,m).
It seems that: a(n+1) is the sum of the n-th antidiagonal of triangle A101494; a(n)-(n mod 2) is the sum of the n-th antidiagonal of array A172236; and a(n+1)+(n mod 2) is the sum of row n of triangle A157103. - Mathew Englander, Feb 28 2021

Crossrefs

Programs

  • Maple
    F:= (n, k)-> (<<0|1>, <1|k>>^n)[1, 2]:
    a:= n-> add(F(j, n-j), j=0..n):
    seq(a(n), n=0..30);
    # second Maple program:
    F:= proc(n, k) option remember;
          `if`(n<2, n, k*F(n-1, k)+F(n-2, k))
        end:
    a:= n-> add(F(j, n-j), j=0..n):
    seq(a(n), n=0..30);
    # third Maple program:
    a:= n-> add(combinat[fibonacci](j, n-j), j=0..n):
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := Sum[Fibonacci[j, n - j], {j, 0, n}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 02 2018, from 3rd Maple program *)

Formula

a(n) = Sum_{j=0..n} F_j(n-j).
a(n+1) = Sum_{j = 0..n} Sum_{i = j..floor((n+j)/2)} binomial(i,j)*(n+j-2*i)^j (empirically). - Mathew Englander, Feb 28 2021