A304357 Antidiagonal sums of the first quadrant of array A(k,m) = F_k(m), F_k(m) being the k-th Fibonacci polynomial evaluated at m.
0, 1, 1, 3, 5, 13, 32, 94, 297, 1036, 3911, 15918, 69350, 321779, 1582745, 8220349, 44925187, 257563819, 1544896976, 9671289892, 63051738167, 427254561854, 3003872526303, 21876513464296, 164790822258172, 1282198404741305, 10292007232817249, 85126350266370355
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..600
- Wikipedia, Fibonacci polynomials
- Wikipedia, Quadrant (plane geometry)
Programs
-
Maple
F:= (n, k)-> (<<0|1>, <1|k>>^n)[1, 2]: a:= n-> add(F(j, n-j), j=0..n): seq(a(n), n=0..30); # second Maple program: F:= proc(n, k) option remember; `if`(n<2, n, k*F(n-1, k)+F(n-2, k)) end: a:= n-> add(F(j, n-j), j=0..n): seq(a(n), n=0..30); # third Maple program: a:= n-> add(combinat[fibonacci](j, n-j), j=0..n): seq(a(n), n=0..30);
-
Mathematica
a[n_] := Sum[Fibonacci[j, n - j], {j, 0, n}]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jun 02 2018, from 3rd Maple program *)
Formula
a(n) = Sum_{j=0..n} F_j(n-j).
a(n+1) = Sum_{j = 0..n} Sum_{i = j..floor((n+j)/2)} binomial(i,j)*(n+j-2*i)^j (empirically). - Mathew Englander, Feb 28 2021
Comments