A304386 Number of unlabeled hypertrees (connected antichains with no cycles) spanning up to n vertices and allowing singleton edges.
1, 2, 5, 15, 50, 200, 907, 4607, 25077, 144337, 863678, 5329994, 33697112, 217317986, 1424880997, 9474795661, 63769947778, 433751273356, 2977769238994, 20611559781972, 143720352656500, 1008765712435162, 7122806053951140, 50566532826530292, 360761703055959592
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(3) = 15 hypertrees are the following: {} {{1}} {{1,2}} {{1,2,3}} {{2},{1,2}} {{1,3},{2,3}} {{3},{1,2,3}} {{1},{2},{1,2}} {{3},{1,2},{2,3}} {{3},{1,3},{2,3}} {{2},{3},{1,2,3}} {{1},{2},{3},{1,2,3}} {{2},{3},{1,2},{1,3}} {{2},{3},{1,3},{2,3}} {{1},{2},{3},{1,3},{2,3}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
PARI
\\ here b(n) is A318494 as vector EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v} seq(n)={my(u=2*b(n)); Vec(1 + x*Ser(EulerT(u))*(1-x*Ser(u))/(1-x))} \\ Andrew Howroyd, Aug 27 2018
Formula
Partial sums of b(1) = 1, b(n) = A134959(n) otherwise.
Extensions
Terms a(7) and beyond from Andrew Howroyd, Aug 27 2018