cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304386 Number of unlabeled hypertrees (connected antichains with no cycles) spanning up to n vertices and allowing singleton edges.

Original entry on oeis.org

1, 2, 5, 15, 50, 200, 907, 4607, 25077, 144337, 863678, 5329994, 33697112, 217317986, 1424880997, 9474795661, 63769947778, 433751273356, 2977769238994, 20611559781972, 143720352656500, 1008765712435162, 7122806053951140, 50566532826530292, 360761703055959592
Offset: 0

Views

Author

Gus Wiseman, May 21 2018

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 15 hypertrees are the following:
  {}
  {{1}}
  {{1,2}}
  {{1,2,3}}
  {{2},{1,2}}
  {{1,3},{2,3}}
  {{3},{1,2,3}}
  {{1},{2},{1,2}}
  {{3},{1,2},{2,3}}
  {{3},{1,3},{2,3}}
  {{2},{3},{1,2,3}}
  {{1},{2},{3},{1,2,3}}
  {{2},{3},{1,2},{1,3}}
  {{2},{3},{1,3},{2,3}}
  {{1},{2},{3},{1,3},{2,3}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A318494 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(2*v)))); v}
    seq(n)={my(u=2*b(n)); Vec(1 + x*Ser(EulerT(u))*(1-x*Ser(u))/(1-x))} \\ Andrew Howroyd, Aug 27 2018

Formula

Partial sums of b(1) = 1, b(n) = A134959(n) otherwise.

Extensions

Terms a(7) and beyond from Andrew Howroyd, Aug 27 2018