cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A304387 a(n) = 27*2^n - 5.

Original entry on oeis.org

22, 49, 103, 211, 427, 859, 1723, 3451, 6907, 13819, 27643, 55291, 110587, 221179, 442363, 884731, 1769467, 3538939, 7077883, 14155771, 28311547, 56623099, 113246203, 226492411, 452984827, 905969659, 1811939323, 3623878651, 7247757307, 14495514619, 28991029243, 57982058491
Offset: 0

Views

Author

Emeric Deutsch, May 13 2018

Keywords

Comments

For n>0, a(n) is the number of edges in the dendrimer nanostar NS1[n] defined pictorially in the Ashrafi et al. reference (Ns1[3] is shown in Fig. 1) or in the Ahmadi et al. reference (Fig. 1).

Crossrefs

Programs

  • GAP
    List([1..40],n->27*2^n-5); # Muniru A Asiru, May 13 2018
  • Maple
    seq(27*2^n-5, n = 0 .. 40);
  • Mathematica
    27*2^Range[0,40]-5 (* or *) LinearRecurrence[{3,-2},{22,49},40] (* Harvey P. Dale, Jan 12 2019 *)
  • PARI
    a(n) = 27*2^n - 5; \\ Altug Alkan, May 13 2018
    
  • PARI
    Vec((22 - 17*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 18 2018
    

Formula

From Colin Barker, May 18 2018: (Start)
G.f.: (22 - 17*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>1.
(End)

Extensions

Offset changed by N. J. A. Sloane, May 13 2018

A304968 Number of labeled hypertrees spanning some subset of {1,...,n}, with singleton edges allowed.

Original entry on oeis.org

1, 2, 7, 48, 621, 12638, 351987, 12426060, 531225945, 26674100154, 1538781595999, 100292956964456, 7288903575373509, 584454485844541718, 51256293341752583499, 4880654469385955209092, 501471626403154217825457, 55300894427785157597436786
Offset: 0

Views

Author

Gus Wiseman, May 22 2018

Keywords

Examples

			The a(2) = 7 hypertrees are the following:
{}
{{1}}
{{2}}
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A134958 with b(1)=1.
    b(n)=if(n<2, n>=0, 2^n*sum(i=0, n, stirling(n-1, i, 2)*n^(i-1)));
    a(n)=sum(k=0, n, binomial(n, k)*b(k)); \\ Andrew Howroyd, Aug 27 2018

Formula

Binomial transform of b(1) = 1, b(n) = A134958(n) otherwise.

A304970 Number of unlabeled hypertrees with up to n vertices and without singleton edges.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 39, 98, 263, 759, 2299, 7259, 23649, 79057, 269629, 935328, 3290260, 11714285, 42139053, 152963037, 559697097, 2062574000, 7649550572, 28534096988, 106994891146, 403119433266, 1525466082179, 5795853930652, 22102635416716, 84579153865570
Offset: 0

Views

Author

Gus Wiseman, May 22 2018

Keywords

Examples

			Non-isomorphic representatives of the a(4) = 8 hypertrees are the following:
{}
{{1,2}}
{{1,2,3}}
{{1,2,3,4}}
{{1,3},{2,3}}
{{1,4},{2,3,4}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A007563 as vector
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
    seq(n)={my(u=b(n)); Vec(1 + (x*Ser(EulerT(u))*(1-x*Ser(u)))/(1-x))} \\ Andrew Howroyd, Aug 27 2018

Formula

Partial sums of A035053 if we assume A035053(1) = 0.
a(n) = A304937(n) + 1 for n > 0.

A304388 a(n) = 144*2^n - 20 (n>=1).

Original entry on oeis.org

268, 556, 1132, 2284, 4588, 9196, 18412, 36844, 73708, 147436, 294892, 589804, 1179628, 2359276, 4718572, 9437164, 18874348, 37748716, 75497452, 150994924, 301989868, 603979756, 1207959532, 2415919084, 4831838188, 9663676396, 19327352812, 38654705644, 77309411308
Offset: 1

Views

Author

Emeric Deutsch, May 13 2018

Keywords

Comments

a(n) is the second Zagreb index of the dendrimer nanostar NS1[n], defined pictorially in the Ashrafi et al. reference (Ns1[3] is shown in Fig. 1) or in the Ahmadi et al. reference (Fig. 1).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of NS1[n] is M(NS1[n]; x,y) = xy^4 + (9*2^n +3)x^2*y^2 + (18*2^n - 12)x^2*y^3 + 3x^3*y^4.

Crossrefs

Programs

  • GAP
    List([1..40],n->144*2^n-20); # Muniru A Asiru, May 13 2018
  • Maple
    seq(144*2^n-20, n = 1 .. 40);
  • Mathematica
    LinearRecurrence[{3,-2},{268,556},30] (* Harvey P. Dale, Nov 02 2021 *)
  • PARI
    a(n) = 144*2^n - 20; \\ Altug Alkan, May 13 2018
    
  • PARI
    Vec(4*x*(67 - 62*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 18 2018
    

Formula

From Colin Barker, May 18 2018: (Start)
G.f.: 4*x*(67 - 62*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>2.
(End)

A304389 a(n) = 126*2^n - 22 (n>=1).

Original entry on oeis.org

230, 482, 986, 1994, 4010, 8042, 16106, 32234, 64490, 129002, 258026, 516074, 1032170, 2064362, 4128746, 8257514, 16515050, 33030122, 66060266, 132120554, 264241130, 528482282, 1056964586, 2113929194, 4227858410, 8455716842, 16911433706, 33822867434, 67645734890, 135291469802, 270582939626, 541165879274
Offset: 1

Views

Author

Emeric Deutsch, May 13 2018

Keywords

Comments

a(n) is the first Zagreb index of the dendrimer nanostar NS1[n], defined pictorially in the Ashrafi et al. reference (Ns1[3] is shown in Fig. 1) or in the Ahmadi et al. reference (Fig. 1).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of NS1[n] is M(NS1[n]; x,y) = xy^4 + (9*2^n + 3)x^2*y^2 + (18*2^n - 12)x^2*y^3 + 3x^3*y^4 .

Crossrefs

Programs

  • GAP
    List([1..40],n->126*2^n-22); # Muniru A Asiru, May 13 2018
  • Maple
    seq(126*2^n-22, n = 1 .. 40);
  • PARI
    a(n) = 126*2^n - 22; \\ Altug Alkan, May 13 2018
    
  • PARI
    Vec(2*x*(115 - 104*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 18 2018
    

Formula

From Colin Barker, May 18 2018: (Start)
G.f.: 2*x*(115 - 104*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>2.
(End)

A305004 Number of labeled hypertrees (connected acyclic antichains) spanning some subset of {1,...,n} without singleton edges.

Original entry on oeis.org

1, 1, 2, 8, 52, 507, 6844, 118582, 2504856, 62370530, 1788082154, 57997339633, 2099638691440, 83922479506504, 3670657248913386, 174387350448735878, 8942472292255441104, 492294103555090048459, 28958704109012732921524
Offset: 0

Views

Author

Gus Wiseman, May 23 2018

Keywords

Examples

			The a(3) = 8 hypertrees:
{}
{{1,2}}
{{1,3}}
{{2,3}}
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
		

Crossrefs

Programs

  • PARI
    \\ here b(n) is A030019 with b(1)=0.
    b(n)=if(n<2, n==0, sum(i=0, n, stirling(n-1, i, 2)*n^(i-1)));
    a(n)=sum(k=0, n, binomial(n, k)*b(k)); \\ Andrew Howroyd, Aug 27 2018

Formula

a(n > 0) = A304939(n) + 1.
Binomial transform of A030019 if we assume A030019(1) = 0.
Showing 1-6 of 6 results.