A304387
a(n) = 27*2^n - 5.
Original entry on oeis.org
22, 49, 103, 211, 427, 859, 1723, 3451, 6907, 13819, 27643, 55291, 110587, 221179, 442363, 884731, 1769467, 3538939, 7077883, 14155771, 28311547, 56623099, 113246203, 226492411, 452984827, 905969659, 1811939323, 3623878651, 7247757307, 14495514619, 28991029243, 57982058491
Offset: 0
- Colin Barker, Table of n, a(n) for n = 0..1000
- M. B. Ahmadi and M. Sadeghimehr, Atom bond connectivity index of an infinite class NS1[n] of dendrimer nanostars, Optoelectronics and Advanced Materials, 4(7):1040-1042 July 2010.
- Ali Reza Ashrafi and Parisa Nikzad, Kekulé index and bounds of energy for nanostar dendrimers, Digest J. of Nanomaterials and Biostructures, 4, No. 2, 2009, 383-388.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
-
List([1..40],n->27*2^n-5); # Muniru A Asiru, May 13 2018
-
seq(27*2^n-5, n = 0 .. 40);
-
27*2^Range[0,40]-5 (* or *) LinearRecurrence[{3,-2},{22,49},40] (* Harvey P. Dale, Jan 12 2019 *)
-
a(n) = 27*2^n - 5; \\ Altug Alkan, May 13 2018
-
Vec((22 - 17*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 18 2018
A304968
Number of labeled hypertrees spanning some subset of {1,...,n}, with singleton edges allowed.
Original entry on oeis.org
1, 2, 7, 48, 621, 12638, 351987, 12426060, 531225945, 26674100154, 1538781595999, 100292956964456, 7288903575373509, 584454485844541718, 51256293341752583499, 4880654469385955209092, 501471626403154217825457, 55300894427785157597436786
Offset: 0
The a(2) = 7 hypertrees are the following:
{}
{{1}}
{{2}}
{{1,2}}
{{1},{1,2}}
{{2},{1,2}}
{{1},{2},{1,2}}
Cf.
A030019,
A035053,
A134954,
A134955,
A134956,
A134957,
A134958,
A134959,
A144959,
A304386,
A304867,
A304911,
A304912,
A304918,
A304968,
A304970.
-
\\ here b(n) is A134958 with b(1)=1.
b(n)=if(n<2, n>=0, 2^n*sum(i=0, n, stirling(n-1, i, 2)*n^(i-1)));
a(n)=sum(k=0, n, binomial(n, k)*b(k)); \\ Andrew Howroyd, Aug 27 2018
A304970
Number of unlabeled hypertrees with up to n vertices and without singleton edges.
Original entry on oeis.org
1, 1, 2, 4, 8, 17, 39, 98, 263, 759, 2299, 7259, 23649, 79057, 269629, 935328, 3290260, 11714285, 42139053, 152963037, 559697097, 2062574000, 7649550572, 28534096988, 106994891146, 403119433266, 1525466082179, 5795853930652, 22102635416716, 84579153865570
Offset: 0
Non-isomorphic representatives of the a(4) = 8 hypertrees are the following:
{}
{{1,2}}
{{1,2,3}}
{{1,2,3,4}}
{{1,3},{2,3}}
{{1,4},{2,3,4}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
Cf.
A030019,
A035053,
A134954,
A134955,
A134956,
A134957,
A134958,
A134959,
A144959,
A304386,
A304867,
A304911,
A304912,
A304918,
A304968,
A304970.
-
\\ here b(n) is A007563 as vector
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
b(n)={my(v=[1]); for(i=2, n, v=concat([1], EulerT(EulerT(v)))); v}
seq(n)={my(u=b(n)); Vec(1 + (x*Ser(EulerT(u))*(1-x*Ser(u)))/(1-x))} \\ Andrew Howroyd, Aug 27 2018
A304388
a(n) = 144*2^n - 20 (n>=1).
Original entry on oeis.org
268, 556, 1132, 2284, 4588, 9196, 18412, 36844, 73708, 147436, 294892, 589804, 1179628, 2359276, 4718572, 9437164, 18874348, 37748716, 75497452, 150994924, 301989868, 603979756, 1207959532, 2415919084, 4831838188, 9663676396, 19327352812, 38654705644, 77309411308
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- M. B. Ahmadi and M. Sadeghimehr, Atom bond connectivity index of an infinite class NS1[n] of dendrimer nanostars, Optoelectronics and Advanced Materials, 4(7):1040-1042 July 2010.
- Ali Reza Ashrafi and Parisa Nikzad, Kekulé index and bounds of energy for nanostar dendrimers, Digest J. of Nanomaterials and Biostructures, 4, No. 2, 2009, 383-388.
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
-
List([1..40],n->144*2^n-20); # Muniru A Asiru, May 13 2018
-
seq(144*2^n-20, n = 1 .. 40);
-
LinearRecurrence[{3,-2},{268,556},30] (* Harvey P. Dale, Nov 02 2021 *)
-
a(n) = 144*2^n - 20; \\ Altug Alkan, May 13 2018
-
Vec(4*x*(67 - 62*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 18 2018
A304389
a(n) = 126*2^n - 22 (n>=1).
Original entry on oeis.org
230, 482, 986, 1994, 4010, 8042, 16106, 32234, 64490, 129002, 258026, 516074, 1032170, 2064362, 4128746, 8257514, 16515050, 33030122, 66060266, 132120554, 264241130, 528482282, 1056964586, 2113929194, 4227858410, 8455716842, 16911433706, 33822867434, 67645734890, 135291469802, 270582939626, 541165879274
Offset: 1
- Colin Barker, Table of n, a(n) for n = 1..1000
- M. B. Ahmadi and M. Sadeghimehr, Atom bond connectivity index of an infinite class NS1[n] of dendrimer nanostars, Optoelectronics and Advanced Materials, 4(7):1040-1042 July 2010.
- Ali Reza Ashrafi and Parisa Nikzad, Kekulé index and bounds of energy for nanostar dendrimers, Digest J. of Nanomaterials and Biostructures, 4, No. 2, 2009, 383-388.
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
-
List([1..40],n->126*2^n-22); # Muniru A Asiru, May 13 2018
-
seq(126*2^n-22, n = 1 .. 40);
-
a(n) = 126*2^n - 22; \\ Altug Alkan, May 13 2018
-
Vec(2*x*(115 - 104*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 18 2018
A305004
Number of labeled hypertrees (connected acyclic antichains) spanning some subset of {1,...,n} without singleton edges.
Original entry on oeis.org
1, 1, 2, 8, 52, 507, 6844, 118582, 2504856, 62370530, 1788082154, 57997339633, 2099638691440, 83922479506504, 3670657248913386, 174387350448735878, 8942472292255441104, 492294103555090048459, 28958704109012732921524
Offset: 0
The a(3) = 8 hypertrees:
{}
{{1,2}}
{{1,3}}
{{2,3}}
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
-
\\ here b(n) is A030019 with b(1)=0.
b(n)=if(n<2, n==0, sum(i=0, n, stirling(n-1, i, 2)*n^(i-1)));
a(n)=sum(k=0, n, binomial(n, k)*b(k)); \\ Andrew Howroyd, Aug 27 2018
Showing 1-6 of 6 results.
Comments