cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304388 a(n) = 144*2^n - 20 (n>=1).

Original entry on oeis.org

268, 556, 1132, 2284, 4588, 9196, 18412, 36844, 73708, 147436, 294892, 589804, 1179628, 2359276, 4718572, 9437164, 18874348, 37748716, 75497452, 150994924, 301989868, 603979756, 1207959532, 2415919084, 4831838188, 9663676396, 19327352812, 38654705644, 77309411308
Offset: 1

Views

Author

Emeric Deutsch, May 13 2018

Keywords

Comments

a(n) is the second Zagreb index of the dendrimer nanostar NS1[n], defined pictorially in the Ashrafi et al. reference (Ns1[3] is shown in Fig. 1) or in the Ahmadi et al. reference (Fig. 1).
The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of NS1[n] is M(NS1[n]; x,y) = xy^4 + (9*2^n +3)x^2*y^2 + (18*2^n - 12)x^2*y^3 + 3x^3*y^4.

Crossrefs

Programs

  • GAP
    List([1..40],n->144*2^n-20); # Muniru A Asiru, May 13 2018
  • Maple
    seq(144*2^n-20, n = 1 .. 40);
  • Mathematica
    LinearRecurrence[{3,-2},{268,556},30] (* Harvey P. Dale, Nov 02 2021 *)
  • PARI
    a(n) = 144*2^n - 20; \\ Altug Alkan, May 13 2018
    
  • PARI
    Vec(4*x*(67 - 62*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 18 2018
    

Formula

From Colin Barker, May 18 2018: (Start)
G.f.: 4*x*(67 - 62*x) / ((1 - x)*(1 - 2*x)).
a(n) = 3*a(n-1) - 2*a(n-2) for n>2.
(End)