A304390 Prime numbers p such that p squared + (p reversed) squared is also prime.
23, 41, 227, 233, 283, 401, 409, 419, 421, 461, 491, 499, 823, 827, 857, 877, 2003, 2083, 2267, 2437, 2557, 2593, 2617, 2633, 2677, 2857, 2887, 2957, 4001, 4021, 4051, 4079, 4129, 4211, 4231, 4391, 4409, 4451, 4481, 4519, 4591, 4621, 4639, 4651, 4871, 6091, 6301, 6329, 6379, 6521, 6529, 6551
Offset: 1
Examples
The prime number 227 belongs to this sequence as 722 is 227 reversed and 227^2 + 722^2 = 572813, which is prime.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..5000
Crossrefs
Cf. A061783 (Luhn primes).
Subsequence of A069207. - Michel Marcus, Aug 21 2018
Programs
-
Mathematica
Select[Prime@ Range@ 850, PrimeQ[#^2 + FromDigits[ Reverse@ IntegerDigits@ #]^2] &] (* Giovanni Resta, Sep 03 2018 *)
-
PARI
isok(p) = isprime(p) && isprime(p^2+eval(fromdigits(Vecrev(digits(p))))^2); \\ Michel Marcus, Aug 21 2018
-
Python
nmax=10000 def is_prime(num): if num == 0 or num == 1: return(0) for k in range(2, num): if (num % k) == 0: return(0) return(1) ris = "" for i in range(nmax): r=int((str(i)[::-1])) t=pow(i,2)+pow(r,2) if is_prime(i): if is_prime(t): ris = ris+str(i)+"," print(ris)