A323026 Zeroless pandigital numbers that are between two twin primes.
123457968, 123459768, 123946578, 124397658, 124936578, 124953678, 125347698, 125437968, 125463798, 125674398, 126345978, 126495738, 126593478, 126597348, 126945738, 127394568, 127396458, 127453968, 127459638, 127659438, 129357648, 129635478, 129673548, 132564978, 132594768, 132769458
Offset: 1
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
PARI
isok(n) = my(d=digits(n)); vecmin(d) && (#Set(d)==9) && isprime(n-1) && isprime(n+1); for (n=123456789, 133000000, if (isok(n), print1(n, ", "))) \\ Michel Marcus, Jan 04 2019
-
Python
import itertools from sympy import isprime nmax=pow(10,10) r="" li=[] def is_pandigit_easy(n): l=[] s=str(n) if '0' in s: return(False) for ch in s: if ch not in l: l.append(ch) l=list(set(l)) if len(l)==9: return(True) else: return(False) t=0 tmax=50 for i in range(123456789,nmax): if is_pandigit_easy(i): if isprime(i-1) and isprime(i+1): li.append(i) t+=1 if t>tmax: break first_elem=26 for k in li[:first_elem]: r=r+","+str(k) print(r[1:])
-
Python
from itertools import permutations from sympy import isprime A323026_list = [n for n in (int(''.join(s)) for s in permutations('123456789')) if isprime(n-1) and isprime(n+1)] # Chai Wah Wu, Jan 27 2019
Comments