cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304450 Numbers that are not perfect powers and whose prime factors span an initial interval of prime numbers.

Original entry on oeis.org

2, 6, 12, 18, 24, 30, 48, 54, 60, 72, 90, 96, 108, 120, 150, 162, 180, 192, 210, 240, 270, 288, 300, 360, 384, 420, 432, 450, 480, 486, 540, 600, 630, 648, 720, 750, 768, 810, 840, 864, 960, 972, 1050, 1080, 1152, 1200, 1260, 1350, 1440, 1458, 1470, 1500, 1536
Offset: 1

Views

Author

Gus Wiseman, May 12 2018

Keywords

Comments

The multiset of prime indices of a(n) is the a(n)-th row of A112798. This multiset is normal, meaning it spans an initial interval of positive integers, and aperiodic, meaning its multiplicities are relatively prime.

Examples

			Sequence of all normal aperiodic multisets begins
2:   {1}
6:   {1,2}
12:  {1,1,2}
18:  {1,2,2}
24:  {1,1,1,2}
30:  {1,2,3}
48:  {1,1,1,1,2}
54:  {1,2,2,2}
60:  {1,1,2,3}
72:  {1,1,1,2,2}
90:  {1,2,2,3}
96:  {1,1,1,1,1,2}
108: {1,1,2,2,2}
120: {1,1,1,2,3}
150: {1,2,3,3}
162: {1,2,2,2,2}
180: {1,1,2,2,3}
192: {1,1,1,1,1,1,2}
210: {1,2,3,4}
240: {1,1,1,1,2,3}
270: {1,2,2,2,3}
288: {1,1,1,1,1,2,2}
300: {1,1,2,3,3}
360: {1,1,1,2,2,3}
384: {1,1,1,1,1,1,1,2}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],FactorInteger[#][[-1,1]]==Prime[Length[FactorInteger[#]]]&&GCD@@FactorInteger[#][[All,2]]===1&]
  • PARI
    ok(n)={my(f=factor(n)[,1]); #f && !ispower(n) && #f==primepi(f[#f])} \\ Andrew Howroyd, Aug 26 2018

Formula

Intersection of A007916 and A055932.