A304450 Numbers that are not perfect powers and whose prime factors span an initial interval of prime numbers.
2, 6, 12, 18, 24, 30, 48, 54, 60, 72, 90, 96, 108, 120, 150, 162, 180, 192, 210, 240, 270, 288, 300, 360, 384, 420, 432, 450, 480, 486, 540, 600, 630, 648, 720, 750, 768, 810, 840, 864, 960, 972, 1050, 1080, 1152, 1200, 1260, 1350, 1440, 1458, 1470, 1500, 1536
Offset: 1
Keywords
Examples
Sequence of all normal aperiodic multisets begins 2: {1} 6: {1,2} 12: {1,1,2} 18: {1,2,2} 24: {1,1,1,2} 30: {1,2,3} 48: {1,1,1,1,2} 54: {1,2,2,2} 60: {1,1,2,3} 72: {1,1,1,2,2} 90: {1,2,2,3} 96: {1,1,1,1,1,2} 108: {1,1,2,2,2} 120: {1,1,1,2,3} 150: {1,2,3,3} 162: {1,2,2,2,2} 180: {1,1,2,2,3} 192: {1,1,1,1,1,1,2} 210: {1,2,3,4} 240: {1,1,1,1,2,3} 270: {1,2,2,2,3} 288: {1,1,1,1,1,2,2} 300: {1,1,2,3,3} 360: {1,1,1,2,2,3} 384: {1,1,1,1,1,1,1,2}
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
Select[Range[1000],FactorInteger[#][[-1,1]]==Prime[Length[FactorInteger[#]]]&&GCD@@FactorInteger[#][[All,2]]===1&]
-
PARI
ok(n)={my(f=factor(n)[,1]); #f && !ispower(n) && #f==primepi(f[#f])} \\ Andrew Howroyd, Aug 26 2018
Comments