A304482 Number A(n,k) of n-element subsets of [k*n] whose elements sum to a multiple of n. Square array A(n,k) with n, k >= 0 read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 1, 0, 1, 4, 6, 8, 0, 0, 1, 5, 12, 30, 18, 1, 0, 1, 6, 20, 76, 126, 52, 0, 0, 1, 7, 30, 155, 460, 603, 152, 1, 0, 1, 8, 42, 276, 1220, 3104, 3084, 492, 0, 0, 1, 9, 56, 448, 2670, 10630, 22404, 16614, 1618, 1, 0, 1, 10, 72, 680, 5138, 28506, 98900, 169152, 91998, 5408, 0, 0
Offset: 0
Examples
Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, 7, ... 0, 0, 2, 6, 12, 20, 30, 42, ... 0, 1, 8, 30, 76, 155, 276, 448, ... 0, 0, 18, 126, 460, 1220, 2670, 5138, ... 0, 1, 52, 603, 3104, 10630, 28506, 64932, ... 0, 0, 152, 3084, 22404, 98900, 324516, 874104, ... 0, 1, 492, 16614, 169152, 960650, 3854052, 12271518, ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (first 51 antidiagonals)
- Marko Riedel et al., Number of n-element subsets divisible by n
Programs
-
Maple
with(numtheory): A:= (n, k)-> `if`(n=0, 1, add(binomial(k*d, d)*(-1)^(n+d)* phi(n/d), d in divisors(n))/n): seq(seq(A(n, d-n), n=0..d), d=0..11);
-
Mathematica
A[n_, k_] : = (-1)^n (1/n) Sum[Binomial[k d, d] (-1)^d EulerPhi[n/d], {d, Divisors[n]}]; A[0, 0] = 1; A[, 0] = 0; A[0, ] = 1; Table[A[n-k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 23 2019 *)
-
PARI
T(n,k)=if(n==0, 1, (-1)^n*sumdiv(n, d, binomial(k*d, d) * (-1)^d * eulerphi(n/d))/n) for(n=0, 7, for(k=0, 7, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Aug 28 2018
Formula
A(n,k) = (-1)^n * (1/n) * Sum_{d|n} C(k*d,d)*(-1)^d*phi(n/d), boundary values A(0,0) = 1, A(n, 0) = 0, A(0, k) = 1.
Comments