A304495 Decapitate the power-tower for n, i.e., remove the last (deepest) exponent.
0, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1
Offset: 1
Keywords
Examples
We have 64 = 2^6, so a(64) = 2. We have 216 = 6^3, so a(216) = 6. We have 256 = 2^2^3, so a(256) = 2^2 = 4.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..65537
Crossrefs
Programs
-
Mathematica
tow[n_]:=If[n==1,{},With[{g=GCD@@FactorInteger[n][[All,2]]},If[g===1,{n},Prepend[tow[g],n^(1/g)]]]]; Table[If[n==1,0,Power@@Most[tow[n]]],{n,100}]
-
PARI
A304495(n) = if(1==n,0,my(e, r, tow = List([])); while((e = ispower(n,,&r)) > 1, listput(tow, r); n = e;); n = 1; while(length(tow)>0, e = tow[#tow]; listpop(tow); n = e^n;); (n)); \\ Antti Karttunen, Jul 23 2018
Formula
a(m) <> 1 if m is a perfect power (A001597). - Michel Marcus, Jul 23 2018
Extensions
Name edited and more terms from Antti Karttunen, Jul 23 2018
Comments