A304504 a(n) = 3*(3*n+1)*(9*n+8)/2.
12, 102, 273, 525, 858, 1272, 1767, 2343, 3000, 3738, 4557, 5457, 6438, 7500, 8643, 9867, 11172, 12558, 14025, 15573, 17202, 18912, 20703, 22575, 24528, 26562, 28677, 30873, 33150, 35508, 37947, 40467, 43068, 45750, 48513, 51357, 54282, 57288, 60375, 63543, 66792
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian Journal of Mathematical Chemistry, Vol. 6, No. 2, 2015, pp. 93-102.
- T. Doslic and M. Saheli, Augmented eccentric connectivity index of single-defect nanocones, Journal of Mathematical Nanoscience, Vol. 1, No. 1, 2011, pp. 25-31.
- A. Khaksar, M. Ghorbani, and H. R. Maimani, On atom bond connectivity and GA indices of nanocones, Optoelectronics and Advanced Materials - Rapid Communications, Vol. 4, No. 11, 2010, pp. 1868-1870.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
seq((1/2)*(3*(9*n+8))*(3*n+1), n = 0 .. 40);
-
PARI
Vec(3*(4 + 22*x + x^2) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018
Formula
From Colin Barker, May 14 2018: (Start)
G.f.: 3*(4 + 22*x + x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 3*exp(x)*(8 + 60*x + 27*x^2)/2.
Comments