A304503 a(n) = 3*(n+1)*(9*n+4).
12, 78, 198, 372, 600, 882, 1218, 1608, 2052, 2550, 3102, 3708, 4368, 5082, 5850, 6672, 7548, 8478, 9462, 10500, 11592, 12738, 13938, 15192, 16500, 17862, 19278, 20748, 22272, 23850, 25482, 27168, 28908, 30702, 32550, 34452, 36408, 38418, 40482, 42600, 44772
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Emeric Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, Vol. 6, No. 2, 2015, pp. 93-102.
- T. Doslic and M. Saheli, Augmented eccentric connectivity index of single-defect nanocones, J. of Mathematical Nanoscience, Vol. 1, No. 1, 2011, pp. 25-31.
- A. Khaksar, M. Ghorbani, and H. R. Maimani, On atom bond connectivity and GA indices of nanocones, Optoelectronics and Advanced Materials - Rapid Communications, Vol. 4, No. 11, 2010, pp. 1868-1870.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Maple
seq((3*(n+1))*(9*n+4), n = 0 .. 40);
-
PARI
Vec(6*(2 + 7*x) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018
Formula
From Colin Barker, May 14 2018: (Start)
G.f.: 6*(2 + 7*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 3*exp(x)*(4 + 22*x + 9*x^2).
Comments