cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304507 a(n) = 5*(n+1)*(9*n+4).

Original entry on oeis.org

20, 130, 330, 620, 1000, 1470, 2030, 2680, 3420, 4250, 5170, 6180, 7280, 8470, 9750, 11120, 12580, 14130, 15770, 17500, 19320, 21230, 23230, 25320, 27500, 29770, 32130, 34580, 37120, 39750, 42470, 45280, 48180, 51170, 54250, 57420, 60680, 64030, 67470, 71000, 74620
Offset: 0

Views

Author

Emeric Deutsch, May 14 2018

Keywords

Comments

The first Zagreb index of the single-defect 5-gonal nanocone CNC(5,n) (see definition in the Doslic et al. reference, p. 27).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of CNC(5,n) is M(CNC(5,n); x,y) = 5*x^2*y^2 + 10*n*x^2*y^3 + 5*n*(3*n+1)*x^3*y^3/2.
More generally, the M-polynomial of CNC(k,n) is M(CNC(k,n); x,y) = k*x^2*y^2 + 2*k*n*x^2*y^3 + k*n*(3*n + 1)*x^3*y^3/2.

Crossrefs

Programs

  • GAP
    List([0..50], n -> 5*(n+1)*(9*n+4)); # Muniru A Asiru, May 15 2018
  • Maple
    seq((5*(n+1))*(9*n+4), n = 0 .. 40);
  • Mathematica
    Array[5 (# + 1) (9 # + 4) &, 41, 0] (* or *)
    LinearRecurrence[{3, -3, 1}, {20, 130, 330}, 41] (* or *)
    CoefficientList[Series[10 (2 + 7 x)/(1 - x)^3, {x, 0, 40}], x] (* Michael De Vlieger, May 14 2018 *)
  • PARI
    a(n) = 5*(n+1)*(9*n+4); \\ Altug Alkan, May 14 2018
    
  • PARI
    Vec(10*(2 + 7*x) / (1 - x)^3 + O(x^40)) \\ Colin Barker, May 14 2018
    

Formula

From Colin Barker, May 14 2018: (Start)
G.f.: 10*(2 + 7*x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
a(n) = 10*A062708(n+1) for n >= 0. - Robert G. Wilson v, May 14 2018
a(n) = 5*A011862(9*n+7) = 5*A108579(6*n+7). - Bruno Berselli, May 15 2018
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: 5*exp(x)*(4 + 22*x + 9*x^2).
a(n) = 5*A017209(n)*A008587(n+1). (End)