cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304561 Number of minimum total dominating sets in the n-triangular (Johnson) graph.

Original entry on oeis.org

0, 3, 12, 80, 840, 630, 13440, 277200, 75600, 3326400, 116839800, 16216200, 1210809600, 65043178200, 5448643200, 617512896000, 47147109609600, 2639867630400, 422378820864000, 43505018548992000, 1742312636064000, 374016445875072000, 49991305310266320000, 1502744648605200000
Offset: 2

Views

Author

Eric W. Weisstein, May 14 2018

Keywords

Comments

In general, a dominating set on a triangular graph corresponds with an edge cover on a complete graph with optionally one vertex uncovered. In the case of n mod 3 == 1, a minimum total dominating set will correspond with one uncovered vertex and the remaining covered by trees of size 3. In the case of n mod 3 == 2, one of trees needs to be increased to size 4. In the case of n divisible by 3, one tree may be size 5 or two size 4 or all may be size 3 but without an uncovered vertex. - Andrew Howroyd, May 20 2018

Crossrefs

Programs

  • Mathematica
    Table[Piecewise[{{(2^-(n/3 + 1) (486 - 99 n - 63 n^2 + 32 n^3) n!)/(243 (n/3)!), Mod[n, 3] == 0}, {(2^((1 - n)/3) n!)/Gamma[(n + 2)/3], Mod[n, 3] == 1}, {(2^((8 - n)/3) n!)/(3 Gamma[(n - 2)/3]), Mod[n, 3] == 2}}], {n, 2, 30}]
  • PARI
    a(n)={my(t=n\3); n!*if(n%3==0, (18-11*t-21*t^2+32*t^3)/18, if(n%3==1, 1, 4*t/3))/(t!*(2^t))} \\ Andrew Howroyd, May 20 2018

Formula

a(3*k+1) = (3*k+1)!/(2^k*k!), a(3*k+2) = 4*k*(3*k+2)!/(3*2^k*k!), a(3*k) = (18 - 11*k - 21*k^2 + 32*k^3)*(3*k)!/(18*2^k*k!). - Andrew Howroyd, May 20 2018

Extensions

a(9)-a(25) from Andrew Howroyd, May 20 2018