cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304567 Number of maximum irredundant sets in the n-antiprism graph.

Original entry on oeis.org

1, 4, 15, 28, 20, 15, 161, 48, 15, 540, 88, 15, 1365, 140, 15, 2896, 204, 15, 5453, 280, 15, 9416, 368, 15, 15225, 468, 15, 23380, 580, 15, 34441, 704, 15, 49028, 840, 15, 67821, 988, 15, 91560, 1148, 15, 121045, 1320, 15, 157136, 1504, 15, 200753, 1700
Offset: 1

Views

Author

Eric W. Weisstein, May 14 2018

Keywords

Comments

Sequence extrapolated to n=1 using formula. - Andrew Howroyd, May 20 2018

Crossrefs

Programs

  • Mathematica
    Table[Piecewise[{{15, Mod[n, 3] == 0}, {n (n + 2) (29 + 20 n + 5 n^2)/162, Mod[n, 3] == 1}, {2 n (n + 1)/3, Mod[n, 3] == 2}}], {n, 20}]
    LinearRecurrence[{0, 0, 5, 0, 0, -10, 0, 0, 10, 0, 0, -5, 0, 0, 1}, {1, 4, 15, 28, 20, 15, 161, 48, 15, 540, 88, 15, 1365, 140, 15}, 20]
    Table[(2430 + 166 n + 177 n^2 + 30 n^3 + 5 n^4 - (-4860 + 166 n + 177 n^2 + 30 n^3 + 5 n^4) Cos[2 n Pi/3] + Sqrt[3] n (-50 - 39 n + 30 n^2 + 5 n^3) Sin[2 n Pi/3])/486, {n, 20}]
    CoefficientList[Series[15/(1 - x^3) x^2 - (1 + 23 x^3 + 31 x^6 + 5 x^9)/(-1 + x^3)^5 - (4 x (1 + 2 x^3))/(-1 + x^3)^3, {x, 0, 20}], x]
  • PARI
    a(n)={if(n%3==0, 15, my(k=n\3); n*(k+1)*if(n%3==1, (5*k^2+10*k+6)/6, 2))} \\ Andrew Howroyd, May 20 2018
    
  • PARI
    Vec(x*(1 + 4*x + 15*x^2 + 23*x^3 - 60*x^5 + 31*x^6 - 12*x^7 + 90*x^8 + 5*x^9 + 8*x^10 - 60*x^11 + 15*x^14) / ((1 - x)^5*(1 + x + x^2)^5) + O(x^50)) \\ Colin Barker, May 22 2018

Formula

From Andrew Howroyd, May 21 2018: (Start)
a(n) = 5*a(n-3) - 10*a(n-6) + 10*a(n-9) - 5*a(n-12) + a(n-15) for n > 15.
a(3*k) = 15, a(3*k+1) = (3*k+1)*(k+1)*(5*k^2+10*k+6)/6, a(3*k+2) = 2*(k+1)*(3*k+2). (End)
G.f.: x*(1 + 4*x + 15*x^2 + 23*x^3 - 60*x^5 + 31*x^6 - 12*x^7 + 90*x^8 + 5*x^9 + 8*x^10 - 60*x^11 + 15*x^14) / ((1 - x)^5*(1 + x + x^2)^5). - Colin Barker, May 22 2018

Extensions

a(1)-a(2) and terms a(14) and beyond from Andrew Howroyd, May 20 2018