A304580 Period 16: repeat 1,8,3,6,5,4,7,2,9,0,7,2,5,4,3,6.
1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 7, 2, 5, 4, 3, 6, 1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 7, 2, 5, 4, 3, 6, 1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 7, 2, 5, 4, 3, 6, 1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 7, 2, 5, 4, 3, 6, 1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 7, 2, 5, 4, 3, 6, 1, 8, 3, 6, 5, 4
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,1,0,0,0,0,0,-1,0,1).
Programs
-
Mathematica
LinearRecurrence[{0,1,0,0,0,0,0,-1,0,1},{1,8,3,6,5,4,7,2,9,0},100] (* or *) PadRight[{},100,{1,8,3,6,5,4,7,2,9,0,7,2,5,4,3,6}] (* Harvey P. Dale, Sep 28 2021 *)
-
PARI
Vec(x*(1 + 8*x + 2*x^2 - 2*x^3 + 2*x^4 - 2*x^5 + 2*x^6 - 2*x^7 + 3*x^8 + 6*x^9) / ((1 - x)*(1 + x)*(1 + x^8)) + O(x^50)) \\ Colin Barker, May 28 2018
Formula
From Colin Barker, May 28 2018: (Start)
G.f.: x*(1 + 8*x + 2*x^2 - 2*x^3 + 2*x^4 - 2*x^5 + 2*x^6 - 2*x^7 + 3*x^8 + 6*x^9) / ((1 - x)*(1 + x)*(1 + x^8)).
a(n) = a(n-2) - a(n-8) + a(n-10) for n > 10.
(End)
Comments