cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Halfdan Skjerning

Halfdan Skjerning's wiki page.

Halfdan Skjerning has authored 32 sequences. Here are the ten most recent ones:

A341992 Take a standard 6-sided die and concatenate the numbers that can be seen around any of the corners and sort into increasing order.

Original entry on oeis.org

123, 124, 132, 135, 142, 145, 153, 154, 213, 214, 231, 236, 241, 246, 263, 264, 312, 315, 321, 326, 351, 356, 362, 365, 412, 415, 421, 426, 451, 456, 462, 465, 513, 514, 531, 536, 541, 546, 563, 564, 623, 624, 632, 635, 642, 645, 653, 654
Offset: 1

Author

Halfdan Skjerning, Feb 25 2021

Keywords

Comments

These are the three-digit numbers that can be read from the simultaneously visible faces that share the same corner on a 6-sided die with a traditional layout (in which the number of pips of opposite sides add up to 7).
3-digit numbers such that the digits are distinct and in 1..6, no two digits add up to 7. - Jianing Song, Mar 21 2021

Formula

a(n) + a(49-n) = 777 for n = 1..48. - Rémy Sigrist, Feb 26 2021

A319678 Numbers with property that the first digit is the length of the number (written in base 10).

Original entry on oeis.org

1, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350
Offset: 1

Author

Halfdan Skjerning, Sep 26 2018

Keywords

Comments

The last term of this sequence is a(111111111) = 999999999.
Numbers n such that A000030(n) = A055642(n). - Felix Fröhlich, Sep 27 2018

Examples

			300 belongs to the sequence since its initial digit is 3 and the number has three digits. 3001 does not belong to the sequence since its initial digit is 3, but the number has four digits in total.
		

Crossrefs

Programs

  • GAP
    P:=List([1..340],ListOfDigits);;
    a:=Filtered([1..Length(P)],i->P[i][1]=Size(P[i])); # Muniru A Asiru, Sep 26 2018
    
  • Mathematica
    Select[Range[1000], IntegerDigits[#][[1]] == Length[IntegerDigits[#]] &] (* Alonso del Arte, Dec 24 2018 *)
  • PARI
    is(n) = #digits(n)==digits(n)[1] \\ Felix Fröhlich, Sep 27 2018
    
  • PARI
    a(n,base=10) = for (w=1, oo, my (c=base^(w-#digits(w,base))); if (n<=c, return (c*w+n-1), n-=c)) \\ Rémy Sigrist, Dec 25 2018
    
  • Python
    def ok(n): strn = str(n); return int(strn[0]) == len(strn)
    def aupto(limit): return [m for m in range(1, limit+1) if ok(m)]
    print(aupto(350)) # Michael S. Branicky, Jan 20 2021

A302563 Numbers whose digital root is equal to their number of digits.

Original entry on oeis.org

1, 11, 20, 29, 38, 47, 56, 65, 74, 83, 92, 102, 111, 120, 129, 138, 147, 156, 165, 174, 183, 192, 201, 210, 219, 228, 237, 246, 255, 264, 273, 282, 291, 300, 309, 318, 327, 336, 345, 354, 363, 372, 381, 390, 399, 408, 417, 426, 435, 444
Offset: 1

Author

Halfdan Skjerning, Aug 16 2018

Keywords

Comments

Last term is a(111111111) = 999999999. - Giovanni Resta, Aug 16 2018

Examples

			11 and 111 belong to the set as they both have the same number of digits as their digital root, respectively; 11 has two digits and also digital root two, and 111 has three digits and digital root three. 302563 does not belong to the set, since it has six digits and digital root one.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], IntegerLength[#] == Mod[#-1, 9] + 1 &] (* Giovanni Resta, Aug 16 2018 *)
  • PARI
    isok(n) = if(n, (n-1)%9+1) == #Str(n); \\ Michel Marcus, Aug 16 2018

A304583 Period 18: repeat 1,8,3,6,5,4,7,2,9,0,9,2,7,4,5,6,3,8.

Original entry on oeis.org

1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 9, 2, 7, 4, 5, 6, 3, 8, 1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 9, 2, 7, 4, 5, 6, 3, 8, 1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 9, 2, 7, 4, 5, 6, 3, 8, 1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 9, 2, 7, 4, 5, 6, 3, 8, 1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 9, 2, 7, 4
Offset: 1

Author

Halfdan Skjerning, May 15 2018

Keywords

Comments

Repeating sequences of alternating odd and even single digits that in pairs sum to 9 or 11. Note that 183654729092745638 = 2020202020020202018 / 11.

Crossrefs

Programs

  • Mathematica
    PadRight[{},120,{1,8,3,6,5,4,7,2,9,0,9,2,7,4,5,6,3,8}] (* Harvey P. Dale, Feb 10 2024 *)
  • PARI
    Vec(x*(1 + 9*x + 11*x^2 + 9*x^3 + 11*x^4 + 9*x^5 + 11*x^6 + 9*x^7 + 11*x^8 + 8*x^9) / ((1 - x)*(1 + x)*(1 + x + x^2)*(1 + x^3 + x^6)) + O(x^50)) \\ Colin Barker, May 28 2018

Formula

From Colin Barker, May 28 2018: (Start)
G.f.: x*(1 + 9*x + 11*x^2 + 9*x^3 + 11*x^4 + 9*x^5 + 11*x^6 + 9*x^7 + 11*x^8 + 8*x^9) / ((1 - x)*(1 + x)*(1 + x + x^2)*(1 + x^3 + x^6)).
a(n) = -a(n-1) + a(n-9) + a(n-10) for n > 10.
(End)

A304580 Period 16: repeat 1,8,3,6,5,4,7,2,9,0,7,2,5,4,3,6.

Original entry on oeis.org

1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 7, 2, 5, 4, 3, 6, 1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 7, 2, 5, 4, 3, 6, 1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 7, 2, 5, 4, 3, 6, 1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 7, 2, 5, 4, 3, 6, 1, 8, 3, 6, 5, 4, 7, 2, 9, 0, 7, 2, 5, 4, 3, 6, 1, 8, 3, 6, 5, 4
Offset: 1

Author

Halfdan Skjerning, May 15 2018

Keywords

Comments

Repeating sequences of alternating odd and even single digits that in pairs sum to 9, 11 or 7. Note that 1836547290725436 = 20202020197979796 / 11.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,1,0,0,0,0,0,-1,0,1},{1,8,3,6,5,4,7,2,9,0},100] (* or *) PadRight[{},100,{1,8,3,6,5,4,7,2,9,0,7,2,5,4,3,6}] (* Harvey P. Dale, Sep 28 2021 *)
  • PARI
    Vec(x*(1 + 8*x + 2*x^2 - 2*x^3 + 2*x^4 - 2*x^5 + 2*x^6 - 2*x^7 + 3*x^8 + 6*x^9) / ((1 - x)*(1 + x)*(1 + x^8)) + O(x^50)) \\ Colin Barker, May 28 2018

Formula

From Colin Barker, May 28 2018: (Start)
G.f.: x*(1 + 8*x + 2*x^2 - 2*x^3 + 2*x^4 - 2*x^5 + 2*x^6 - 2*x^7 + 3*x^8 + 6*x^9) / ((1 - x)*(1 + x)*(1 + x^8)).
a(n) = a(n-2) - a(n-8) + a(n-10) for n > 10.
(End)

A292739 Numbers in which 9 outnumbers all other digits together.

Original entry on oeis.org

9, 99, 199, 299, 399, 499, 599, 699, 799, 899, 909, 919, 929, 939, 949, 959, 969, 979, 989, 990, 991, 992, 993, 994, 995, 996, 997, 998, 999, 1999, 2999, 3999, 4999, 5999, 6999, 7999, 8999, 9099, 9199, 9299, 9399, 9499, 9599, 9699, 9799, 9899, 9909, 9919, 9929, 9939, 9949, 9959, 9969, 9979, 9989, 9990, 9991, 9992, 9993, 9994, 9995, 9996, 9997, 9998, 9999
Offset: 1

Author

Halfdan Skjerning, Sep 25 2017

Keywords

Comments

Also numbers whose median of the digits is equal to 9. - Stefano Spezia, Oct 04 2023

Examples

			909 has more 9's than any other digit, whereas both 9009 and 9019 have as many other digits as 9's.
		

Crossrefs

Subset of A292449.
Numbers where n outnumbers any other digit: A292449, A292450, A292451, A292452, A292453, A292454, A292455, A292456, A292457, A292458.
Numbers in which n outnumbers all other digits together: A292730, A292731, A292732, A292733, A292734, A292735, A292736, A292738.

Programs

  • Mathematica
    Select[Range[0, 10^4], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 9] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 25 2017 *)
    Select[Range[10000],2*DigitCount[#,10, 9]>IntegerLength[#]&] (* Harvey P. Dale, Aug 04 2019 *)

A292738 Numbers in which 8 outnumbers all other digits together.

Original entry on oeis.org

8, 88, 188, 288, 388, 488, 588, 688, 788, 808, 818, 828, 838, 848, 858, 868, 878, 880, 881, 882, 883, 884, 885, 886, 887, 888, 889, 898, 988, 1888, 2888, 3888, 4888, 5888, 6888, 7888, 8088, 8188, 8288, 8388, 8488, 8588, 8688, 8788, 8808, 8818, 8828, 8838, 8848, 8858, 8868, 8878, 8880, 8881, 8882, 8883, 8884, 8885, 8886, 8887, 8888
Offset: 1

Author

Halfdan Skjerning, Sep 25 2017

Keywords

Examples

			808 has more 8's than any other digit, whereas both 8008 and 8018 have as many other digits as 8's.
		

Crossrefs

Subset of A292458.
Numbers where n outnumbers any other digit: A292449, A292450, A292451, A292452, A292453, A292454, A292455, A292456, A292457, A292458.
Numbers in which n outnumbers all other digits together: A292730, A292731, A292732, A292733, A292734, A292735, A292736, A292737, A292739.

Programs

  • Mathematica
    Select[Range[0, 9000], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 8] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 25 2017 *)

A292737 Numbers in which 7 outnumbers all other digits together.

Original entry on oeis.org

7, 77, 177, 277, 377, 477, 577, 677, 707, 717, 727, 737, 747, 757, 767, 770, 771, 772, 773, 774, 775, 776, 777, 778, 779, 787, 797, 877, 977, 1777, 2777, 3777, 4777, 5777, 6777, 7077, 7177, 7277, 7377, 7477, 7577, 7677, 7707, 7717, 7727, 7737, 7747, 7757, 7767, 7770, 7771, 7772, 7773, 7774, 7775, 7776, 7777, 7778
Offset: 1

Author

Halfdan Skjerning, Sep 25 2017

Keywords

Examples

			707 has more 7's than any other digit, whereas both 7007 and 7017 have as many other digits as 7's.
		

Crossrefs

Subset of A292457.
Numbers where n outnumbers any other digit: A292449, A292450, A292451, A292452, A292453, A292454, A292455, A292456, A292457, A292458.
Numbers in which n outnumbers all other digits together: A292730, A292731, A292732, A292733, A292734, A292735, A292736, A292738, A292739.

Programs

  • Mathematica
    Select[Range[0, 8000], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 7] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 25 2017 *)

A292736 Numbers in which 6 outnumbers all other digits together.

Original entry on oeis.org

6, 66, 166, 266, 366, 466, 566, 606, 616, 626, 636, 646, 656, 660, 661, 662, 663, 664, 665, 666, 667, 668, 669, 676, 686, 696, 766, 866, 966, 1666, 2666, 3666, 4666, 5666, 6066, 6166, 6266, 6366, 6466, 6566, 6606, 6616, 6626, 6636, 6646, 6656, 6660, 6661, 6662, 6663, 6664, 6665, 6666, 6667, 6668, 6669, 6676, 6686
Offset: 1

Author

Halfdan Skjerning, Sep 22 2017

Keywords

Comments

Subset of A292456.

Examples

			606 has more 6's than any other digit, whereas both 6006 and 6016 have as many other digits as 6's.
		

Programs

  • Maple
    F:= proc(d) local s, m, T;
      s:= 6*(10^d-1)/9;
      T:= select(`>=`,{seq(seq(seq(s+G(c,k), k = 0 .. 10^m-1),c = combinat:-choose([$0..d-1],m)),m=0 .. floor((d-1)/2))},10^(d-1));
      op(sort(convert(T,list)))
    end proc:
    G:= proc(c,k) local L,m,j;
          m:= nops(c);
          L:= convert(10^m+k,base,10);
          add((L[j]-6)*10^c[j], j=1..m)
    end proc:
    seq(F(d),d=1..4); # Robert Israel, Sep 24 2017
  • Mathematica
    Select[Range[0, 6700], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 6] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 22 2017 *)

A292735 Numbers in which 5 outnumbers all other digits together.

Original entry on oeis.org

5, 55, 155, 255, 355, 455, 505, 515, 525, 535, 545, 550, 551, 552, 553, 554, 555, 556, 557, 558, 559, 565, 575, 585, 595, 655, 755, 855, 955, 1555, 2555, 3555, 4555, 5055, 5155, 5255, 5355, 5455, 5505, 5515, 5525, 5535, 5545, 5550, 5551, 5552, 5553, 5554, 5555, 5556, 5557, 5558, 5559, 5565, 5575, 5585, 5595, 5655
Offset: 1

Author

Halfdan Skjerning, Sep 22 2017

Keywords

Comments

Subset of A292455.

Examples

			505 has more 5's than any other digit, whereas both 5005 and 5015 have as many other digits as 5's.
		

Programs

  • Mathematica
    Select[Range[0, 6000], Total@ #1 < First@ #2 & @@ TakeDrop[RotateLeft[#, 5] &@ DigitCount@ #, 9] &] (* Michael De Vlieger, Sep 22 2017 *)
    Select[Range[6000],DigitCount[#,10,5]>(IntegerLength[#]-DigitCount[#,10,5])&] (* Harvey P. Dale, May 08 2022 *)