cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A304586 A linear mapping a(n) = x + d*n of pairs of integers (x,d), where the pairs are enumerated by the counterclockwise square spiral (an axis-parallel number spiral) starting at 0.

Original entry on oeis.org

0, 1, 3, 3, 3, -1, -7, -7, -7, -7, 2, 13, 26, 27, 28, 29, 30, 15, -2, -21, -42, -43, -44, -45, -46, -47, -23, 3, 31, 61, 93, 95, 97, 99, 101, 103, 105, 71, 35, -3, -43, -85, -129, -131, -133, -135, -137, -139, -141, -143, -96, -47, 4, 57, 112, 169, 228, 231, 234, 237, 240, 243
Offset: 0

Views

Author

Hugo Pfoertner, May 16 2018

Keywords

Comments

The sequence is a solution to the riddle described in the comments of A304584 without the restriction of x and d to nonnegative numbers.

Examples

			This is the standard counterclockwise square spiral starting at 0. - _N. J. A. Sloane_, Oct 17 2019
d:
   3 |  36--35--34--33--32--31--30  55
     |   |                       |   |
   2 |  37  16--15--14--13--12  29  54
     |   |   |               |   |   |
   1 |  38  17   4---3---2  11  28  53
     |   |   |   |       |   |   |   |
   0 |  39  18   5   0---1  10  27  52
     |   |   |   |           |   |   |
  -1 |  40  19   6---7---8---9  26  51
     |   |   |                   |   |
  -2 |  41  20--21--22--23--24--25  50
     |   |                           |
  -3 |  42--43--44--45--46--47--48--49
     _________________________________
  x:    -3  -2  -1   0   1   2   3   4
.
a(9) = 2 + 9*(-1) = -7 because the 9th position in the spiral corresponds to x = 2 and d = -1,
a(14) = 0 + 14*2 = 28 because the 14th position in the spiral corresponds to x = 0 and d = 2,
a(25) = 3 + 25*(-2) = -47 because the 25th position in the spiral corresponds to x = 3 and d = -2.
		

Crossrefs

Programs

  • Maple
    square2pair:=proc(sq)local w,k;w:=floor(sqrt(sq));k:=floor(w/2);if modp(sq,2)=0 then return[-k,k];else return[k+1,-k];fi;end:pos2pS:=proc(n)local w,q,Q,e,E,sp;w:=floor(sqrt(n));q := w^2;Q:=(w+1)^2;e:=n-q;E:=Q-n;if eRainer Rosenthal, May 24 2018

Extensions

a(1) and a(2) corrected by Rainer Rosenthal, May 24 2018