A304587 A linear mapping a(n) = x + d*n of pairs of integers (x,d), where the pairs are enumerated by a number spiral along antidiagonals.
0, 1, 2, -1, -4, 2, 7, 14, 7, -2, -11, -22, -11, 3, 16, 31, 48, 33, 16, -3, -22, -43, -66, -45, -22, 4, 29, 56, 85, 116, 89, 60, 29, -4, -37, -72, -109, -148, -113, -76, -37, 5, 46, 89, 134, 181, 230, 187, 142, 95, 46, -5, -56, -109, -164, -221, -280, -227, -172, -115, -56, 6, 67
Offset: 0
Examples
d: 3 | 16 28 | / \ \ 2 | 17 7 15 27 | / / \ \ \ 1 | 18 8 2 6 14 26 | / / / \ \ \ \ 0 | 19 9 3 0---1 5 13 25 | \ \ \ --> --> --> -1 | 20 10 4 12 24 | \ \ / / -2 | 21 11 23 | \ / -3 | 22 __________________________________ x: -3 -2 -1 0 1 2 3 4 . a(10) = -1 + 10*(-1) = -11 because the 10th position in the spiral corresponds to x = -1 and d = -1, a(15) = 1 + 15*2 = 31 because the 15th position in the spiral corresponds to x = 1 and d = 2, a(25) = 4 + 25*0 = 4 because the 25th position in the spiral corresponds to x = 4 and d = 0.
Links
- Rainer Rosenthal, Table of n, a(n) for n = 0..10000
Programs
-
Maple
n2left := proc(n)local w,k;return floor(sqrt((n-1)/2));end:pos2pH:=proc(n)local k,q,Q,e,E,sp;k:=n2left(n);q:=2*k^2+1;Q:=2*(k+1)^2+1;e:=n-q;E:=Q-n;if n<2 then return[n,0];fi;if e<=k then return[-k+e,-e];elif e<2*k then return[-k+e,-2*k+e];elif E<=k+1 then return[-(k+1)+E,E];else return[E-(k+1),2*(k+1)-E];fi;end:WhereFlea:=proc(n) local x,d,pair; pair:=pos2pH(n);x:=pair[1];d:=pair[2];return x+d*n;end: seq(WhereFlea(n),n=0..62);# Rainer Rosenthal, May 28 2018
-
Sage
def a(n): if n<2: return n k = isqrt((n-1)/2) e = n-k*(2*k+1)-1 x = e if e
Peter Luschny, May 29 2018
Extensions
a(1) corrected by Rainer Rosenthal, May 28 2018
Comments